REVISITING SOME FUZZY ALGEBRAIC STRUCTURES

Rabah Kellil
Author affiliations

Authors

  • Rabah Kellil College of Science, Laghrour Abbes University, Khenchela, Algeria

DOI:

https://doi.org/10.15625/1813-9663/38/3/17039

Keywords:

Fuzzy relation, Fuzzy equivalence relation, Fuzzy coset

Abstract

Following our investigations on some fuzzy algebraic structures started in [6--8], and [9], in the present work, we revisit fuzzy groups and fuzzy ideals and introduce some new examples and then define the notion of fuzzy relation modulo a fuzzy subgroup and modulo a fuzzy ideal. As a consequence, we introduce the right and left cosets modulo a fuzzy relation. This work and the previously cited ones can be considered as a continuation of investigations initiated in [1--5]. Toward our investigation, we have in mind that by introducing these new definitions, the results that we can get should represent generalization of classical and commonly known concepts of algebra.

Metrics

Metrics Loading ...

References

M.T. Abu Osman, Some properties of fuzzy subgroups, J. Sains Malaysiana, 12 (2) (1984), 155-163.

M.T. Abu Osman, On the direct product of fuzzy subgroups, Fuzzy Sets, and Systems, 12 (1984), 87-91. DOI: https://doi.org/10.1016/0165-0114(84)90052-6

M.T. Abu Osman, On normal fuzzy subgroups, Proc. Second Malaysian National Mathematical Science Symposium (1986), 186-195 (in

Malay).

J.M. Anthony, H. Sherwood, Fuzzy group redefined, J. Math. Anal. Appl., 69 (1979), 124-130. DOI: https://doi.org/10.1016/0022-247X(79)90182-3

J.M. Anthony, H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Sets, and Systems, 7 (1982), 297-305. DOI: https://doi.org/10.1016/0165-0114(82)90057-4

R. Kellil, New approaches on some fuzzy algebraic structures, J. Intell Fuzzy Systems vol. 32(1) (2017), 579-587. DOI: https://doi.org/10.3233/JIFS-152523

R.Kellil, On the set of subhypergroups of certain canonical hypergroups C(n),JP Journal of Algebra, Number Theory and Applications 38 (2) DOI: https://doi.org/10.17654/NT038020185

(2016), 109-211.

R.Kellil, On 2-Absorbing Fuzzy Ideals, JP Journal of Algebra, Number Theory and Applications 39 (4)(2017), 479-505. DOI: https://doi.org/10.17654/NT039040479

R.Kellil, Sum, and product of Fuzzy ideals of a ring, International Journal of Mathematics and Computer Science 13 (2)(2018), 187-205.

R. Kumar, Fuzzy subgroups, fuzzy ideals, and fuzzy cosets: Some properties, Fuzzy Sets and Systems 48 (1992), 267-274. DOI: https://doi.org/10.1016/0165-0114(92)90341-Z

T. Kuraoka and N. Kuroki, On fuzzy quotient rings induced by fuzzy ideals, Fuzzy Sets and Systems 47 (1992), 381-386 DOI: https://doi.org/10.1016/0165-0114(92)90303-L

K.H. Lee, On fuzzy quotient rings and chain conditions, J.Korean Soc. Math. Educ. Ser.B: Pure Appl. Math. 7 (2000), no.1, 33-40

W.J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139. DOI: https://doi.org/10.1016/0165-0114(82)90003-3

W.J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems11 (1983), 31-41. DOI: https://doi.org/10.1016/S0165-0114(83)80067-0

A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. DOI: https://doi.org/10.1016/0022-247X(71)90199-5

D. S. Malik, Fuzzy ideals of Artinian rings, Fuzzy Sets and Systems 37 (1990), 111-115. DOI: https://doi.org/10.1016/0165-0114(90)90069-I

D. S. Malik and J. N. Mordeson, Fuzzy maximal, radical, and primary ideals of a ring, Inform. Sci. 53 (1991), 237-250. DOI: https://doi.org/10.1016/0020-0255(91)90038-V

T. K. Mukherjee and M. K. Sen, Rings with chain conditions, Fuzzy Sets and Systems 39 (1991), 117-123. DOI: https://doi.org/10.1016/0165-0114(91)90071-W

L.A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971), 177-200. DOI: https://doi.org/10.1016/S0020-0255(71)80005-1

Downloads

Published

22-09-2022

How to Cite

[1]
R. Kellil, “REVISITING SOME FUZZY ALGEBRAIC STRUCTURES”, JCC, vol. 38, no. 3, p. 213–228, Sep. 2022.

Issue

Section

Articles