A CLOSED-FORM SOLUTION FOR A QUEUEING MODEL OF ENERGY EFFICIENT ETHERNET LINKS
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/37/4/16126Keywords:
Energy Efficient Ethernet, queueing model, Markov Modulated Compound Poission ProcessAbstract
To save energy consumption of Ethernet switches, IEEE has standardized a new energy-efficient operation for Ethernet links with a low-power state and transition mechanisms between the high-power state for transporting traffic and the low-power state.
In this paper, we propose a queueing model with the Markov Modulated Compound Poisson Process that is able to characterize backbone packet traffic. We derive a closed-form solution for the stationary distribution of the proposed queueing model. We show that our model can capture an entire system where the transition times are constant.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.