Approximation Schemes for Two Non-Linear Knapsack Problems and Their Applications in Alternating Current Electric Systems
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/33/2/10673Keywords:
Complex power, alternating current electrical systems, integer quadratic programming, approximation schemeAbstract
The purpose of this paper is to study the approximability of two non-linear Knapsack problems, which are motivated by important applications in alternating current electrical systems. The first problem is to maximize a nonnegative linear objective function subject to a quadratic constraint, whilst the second problem is a dual version of the first one, where an objective function is minimized. Both problems are $\np$-hard since they generalize the unbounded Knapsack problem, and it is unlikely to obtain polynomial-time algorithms for them, unless $\p=\np$. It is therefore of great interest to know whether or not there exist efficient approximation algorithms which can return an approximate solution in polynomial time with a reasonable approximation factor. Our contribution of this paper is to present polynomial-time approximation schemes (PTASs) and this is the best possible result one can hope for the studied problems. Our technique is based on the linear-programming approach which seems to be more simple and efficient than the previous one.Metrics
Metrics Loading ...
Downloads
Published
29-12-2017
How to Cite
[1]
T. Nguyen, “Approximation Schemes for Two Non-Linear Knapsack Problems and Their Applications in Alternating Current Electric Systems”, JCC, vol. 33, no. 2, p. 165–179, Dec. 2017.
Issue
Section
Computer Science
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.