Roles of gate-oxide thickness reduction in scaling bulk and thin-body tunnel field-effect transistors
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/55/3/8362Keywords:
Gate oxide scaling, SOI structure, short-channel effect, low-bandgap device, tunnel field-effect transistor (TFET)Abstract
Tunnel field-effect transistor (TFET) has recently been considered as a promising candidate for low-power integrated circuits. In this paper, we present an adequate examination on the roles of gate-oxide thickness reduction in scaling bulk and thin-body TFETs. It is shown that the short-channel performance of TFETs has to be characterized by both the off-current and the subthreshold swing because their physical origins are completely different. The reduction of gate-oxide thickness plays an important role in maintaining low subthreshold swing whereas it shows a less role in suppressing off-state leakage in short-channel TFETs with bulk and thin-body structures. When scaling the gate-oxide thickness, the short-channel effect is suppressed more effectively in thin-body TFETs than in bulk devices. Clearly understanding the roles of scaling gate-oxide thickness is necessary in designing advanced scaled TFET devices.Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.