Design optimization of extremely short-channel graded Si/SiGe heterojunction tunnel field-effect transistors for low power applications
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/51/6/11642Abstract
This study investigates, by a two-dimensional simulation, the design optimization of a proposed 8 nm tunnel field-effect transistor (TFET) for low standby power (LSTP) applications utilizing graded Si/SiGe heterojunction with device parameters based on the ITRS specifications. The source Ge mole fraction should be designed approximately 0.8 because using lower Ge fractions causes severe short-channel effects while with higher values does not significantly improve the device performance but may create big difficulties in fabrication. Based on simultaneously optimizing the subthreshold swing, on- and off-currents, optimum values of source doping, drain doping and length of the proposed device are approximately 1020 cm-3, 1018 cm-3, and 10 nm, respectively. The 8 nm graded Si/SiGe TFET with optimized device parameters demonstrates high on-current of 360 μA/μm, low off-current of 0.5 pA/μm, low threshold voltage of 85 mV and very steep subthreshold swing of sub-10 mV/decade. The designed TFET with graded Si/SiGe heterojunction exhibits an excellent performance and makes it an attractive candidate for future LSTP technologies because of its reality to be fabricated with existing FET and SiGe growth techniques.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.