Ag/Fe3O4 bifunctional nanocomposite for SERS detection of non-steroidal anti-inflammation drug diclofenac

Duy Hai Bui, Do Chung Pham, Magdalena Osial, Marcin Pisarek, Anna Tycova, Thi Nam Pham, Thi Thanh Huong Nguyen, Thi Thu Vu, Thi Thanh Ngan Nguyen
Author affiliations

Authors

  • Duy Hai Bui University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Do Chung Pham Hanoi National University of Education (HNUE), 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0003-2239-7005
  • Magdalena Osial Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland https://orcid.org/0000-0003-3076-3415
  • Marcin Pisarek Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw,Poland
  • Anna Tycova Institute of Analytical Chemistry (IAC), Czech Academy of Science (CAS), Veveří 97, 602 00 Brno, Czech Republic https://orcid.org/0000-0001-6351-7830
  • Thi Nam Pham Institute of Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Thi Thanh Huong Nguyen Institute of Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Thi Thu Vu University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Thi Thanh Ngan Nguyen University of Science and Technology of Hanoi https://orcid.org/0009-0009-8192-8794

DOI:

https://doi.org/10.15625/2525-2518/20157

Keywords:

AgNPs,, Fe3O4, bifunctional, SERS, NSAIDS

Abstract

In this work, a bifunctional nanocomposite based on silver and iron oxide nanoparticles (AgNPs/Fe3O4) was prepared and then used as SERS substrate (surface-enhanced Raman spectroscopy) for sensing diclofenac which is one of the most widely used non-steroid anti-inflammation drugs. AgNPs/Fe3O4 nanocomposite was synthesized by combining co-precipitation of iron oxide and in-situ reduction of silver nanoparticles. Morphology and structural studies revealed a conjugated structure in which silver nanoparticles (80 nm in diameter) were surrounded by iron oxide nanoparticles (18 nm in diameter). There is a slight blue-shift in position of plasmon peak from 405 nm for silver nanoparticles to 375 nm for AgNPs/Fe3O4 nanocomposite. Even the saturation magnetization (Ms) of the Ag/Fe3O4 nanocomposite only reached 28 emu.g-1 but still good enough for immobilizing nanocomposite structures onto the substrate. The use of AgNPs/Fe3O4 nanocomposite as SERS substrate for sensing application was demonstrated with using diclofenac as a model. The detection limit and enhancement factor of the SERS-based diclofenac sensor were found to be 10-12 M and 2.6×1010, respectively. Such kind of bifunctional nanocomposite will probably help us to avoid time-consuming process to immobilize metal nanoparticles onto the surface, and also allow us to regenerate the substrate for multiple uses.

Downloads

Download data is not yet available.

References

1. Kartsonakis I. A., Athanasopoulou E., Snihirova D., Martins B., Koklioti M. A., Montemor M. F., Kordas G., Charitidis C. A. - Multifunctional epoxy coatings combining a mixture of traps and inhibitor loaded nanocontainers for corrosion protection of AA2024-T3, Corros. Sci. 85 (2014)147-159. doi.org/10.1016/j.corsci.2014.04.009.

2. Morcillo M. - Soluble salts: their effect on premature degradation of anticorrosive paints. Prog. Org. Coat., 36 (1999) 137-147. doi.org/10.1016/S0300-9440(99)00036-3.

3. Dias S.A.S., Marques A., Lamaka S.V., Simões A., Diamantino T.C., and Ferreira M.G.S. - The role of Ce(III)-enriched zeolites on the corrosion protection of AA2024-T3. Electrochim. Acta., 112 (2013) 549–556. doi.org/10.1016/j.electacta.2013.09.026

4. Balaskas A.C., Kartsonakis I.A., Tziveleka L.-A., and Kordas G.C. - Improvement of anti-corrosive properties of epoxy-coated AA2024-T3 with TiO2 nanocontainers loaded with 8-hydroxyquinoline. Prog. Org. Coat., 74 (2012) 418–426. doi.org/10.1016/j.porgcoat.2012.01.005.

5. Kartsonakis I., Daniilidis I., and Kordas G. - Encapsulation of the corrosion inhibitor 8-hydroxyquinoline into ceria nanocontainers. J. Sol-Gel Sci. Technol., 48 (2008) 24–31. doi.org/10.1007/s10971-008-1810-4.

6. Montemor M.F. and Ferreira M.G.S. - Analytical characterization of silane films modified with cerium active nanoparticles and its relation with the corrosion protection of galvanized steel substrate. Prog. Org. Coat., 63 (2008) 330–337. doi.org/10.1016/j.porgcoat.2007.11.008

7. Sultan S., Kareem K., He L. - Synthesis, characterization and resistant performance of α-Fe2O3@SiO2 composite as pigment protective coatings. Surf. Coat. Technol., 300 (2016) 42–49. doi.org/10.1016/j.surfcoat.2016.05.010.

8. Deflorian F., Rossi S., Fedel M., Motte C. - Electrochemical investigation of high-performance silane sol-gel films containing clay nanoparticles. Prog. Org. Coat., 69 (2010) 158–166. doi.org/10.1016/j.porgcoat.2010.04.007

9. Naderi R., Fedel M., Deflorian F., Poelman M., Olivier M.-G. - Synergistic effect of clay nanoparticles and cerium component on the corrosion behavior of eco-friendly silane sol-gel layer applied on pure aluminum. Surf. Coat. Technol., 224 (2013) 93–100. doi.org/10.1016/j.surfcoat.2013.03.005.

10. Motte C., Poelman M., Roobroeck A., Fedel M., Deflorian F., Olivier M.-G. - Improvement of corrosion protection offered to galvanized steel by incorporation of lanthanide modified nanoclays in silane layer. Prog. Org. Coat., 74 (2012) 326–333. doi.org/10.1016/j.porgcoat.2011.12.001

11. Thai T. T., Trinh A. T., Olivier M.-G. - Hybrid sol-gel coatings doped with cerium nanocontainers for active corrosion protection of AA2024. Prog. Org. Coat., 138 (2020) 105428.doi.org/10.1016/j.porgcoat.2019.105428.

12. Darmiani E., Danaee I., Rashed G.R., Zaarei D. - Formulation and study of corrosion prevention behavior of epoxy cerium nitrate-montmorillonite nanocomposite coated carbon steel. J. Coat. Technol. Res., 10 (4) (2013) 493–502. doi.org/10.1007/s11998-012-9463-1

13. Sturgill J.A., Phelps A.W., Swartzbaugh J.T. - Non-toxic corrosion-protection pigments based on cobalts. Patent US 7,833,331 B2.

14. Trinh Anh Truc, To Thi Xuan Hang, Vu Ke Oanh, Eric Dantras, Colette Lacabanne, Djar Oquab, Nadine Pébère. - Incorporation of an indole-3 butyric acid modified clay in epoxy resin for corrosion protection of carbon steel. Surf. Coat. Technol., 202(20) (2008) 4945–4951. doi.org/10.1016/j.surfcoat.2008.04.092

15. Arnott D. R., Hinton B. R. W., and Ryan N. E. - Cationic-Film-Forming Inhibitors for the Protection of the Aluminum Alloy AA 7075 Against Corrosion in Aqueous Chloride Solution. Corrosion., 45 (1989) 12-18. doi.org/10.5006/1.3577880.

16. Yuanyuan Ji, Quian Hu, Da-Hai Xia, Jing-Li Luo. - Corrosion susceptibility of passive films on 1060, 2024 and 5083 aluminum alloys: experimental study and first-principles calculations. J. Electrochem. Soc., 170 (2023) 041505. doi.org/10.1149/1945-7111/accab8.

17. Thu Thuy Thai, Anh Truc Trinh, Gia Vu Pham, Thi Thanh Tam Pham, Hoan Nguyen Xuan. - Corrosion protection properties of cobalt salt for water-based epoxy coatings on 2024-T3 aluminum alloy. Corros. Sci. Technol., 19 (1) (2020) 8-15. doi.org/10.14773/cst.2020.19.1.8

18. Henry Leidheiser, Jr. and Ichiro Suzuki. - Cobalt and Nickel Cations as Corrosion Inhibitors for Galvanized Steel. J. Electrochem. Soc., 128 (2) (1981) 242. doi.org/10.1149/1.2127399.

19. Henry Leidheiser, Jr. and Gary W. Simmons. - Mössbauer Spectroscopic Study of the Corrosion Inhibition of Zinc by Cobalt Ions. J. Electrochem. Soc., 129 (8), (1982)1658. doi.org/10.1149/1.2124231.

Downloads

Published

12-06-2024

How to Cite

[1]
D. H. Bui, “Ag/Fe3O4 bifunctional nanocomposite for SERS detection of non-steroidal anti-inflammation drug diclofenac ”, Vietnam J. Sci. Technol., vol. 62, no. 5, pp. 931–941, Jun. 2024.

Issue

Section

Materials

Most read articles by the same author(s)