Ag/Fe3O4 bifunctional nanocomposite for SERS detection of non-steroidal anti-inflammation drug diclofenac

Thi Thanh Ngan Nguyen, Duy Hai Bui, Do Chung Pham, Magdalena Osial, Marcin Pisarek, Anna Tycova, Thi Nam Pham, Thi Thanh Huong Nguyen, Thi Thu Vu
Author affiliations

Authors

  • Thi Thanh Ngan Nguyen University of Science and Technology of Hanoi https://orcid.org/0009-0009-8192-8794
  • Duy Hai Bui University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Do Chung Pham Hanoi National University of Education (HNUE), 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0003-2239-7005
  • Magdalena Osial Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland https://orcid.org/0000-0003-3076-3415
  • Marcin Pisarek Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw,Poland
  • Anna Tycova Institute of Analytical Chemistry (IAC), Czech Academy of Science (CAS), Veveří 97, 602 00 Brno, Czech Republic https://orcid.org/0000-0001-6351-7830
  • Thi Nam Pham Institute of Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Thi Thanh Huong Nguyen Institute of Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Thi Thu Vu University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2525-2518/20157

Keywords:

AgNPs,, Fe3O4, bifunctional, SERS, NSAIDS

Abstract

In this work, a bifunctional nanocomposite based on silver and iron oxide nanoparticles (AgNPs/Fe3O4) was prepared and then used as SERS substrate (surface-enhanced Raman spectroscopy) for sensing diclofenac which is one of the most widely used non-steroid anti-inflammation drugs. AgNPs/Fe3O4 nanocomposite was synthesized by combining co-precipitation of iron oxide and in-situ reduction of silver nanoparticles. Morphology and structural studies revealed a conjugated structure in which silver nanoparticles (80 nm in diameter) were surrounded by iron oxide nanoparticles (18 nm in diameter). There is a slight blue-shift in position of plasmon peak from 405 nm for silver nanoparticles to 375 nm for AgNPs/Fe3O4 nanocomposite. Even the saturation magnetization (Ms) of the Ag/Fe3O4 nanocomposite only reached 28 emu.g-1 but still good enough for immobilizing nanocomposite structures onto the substrate. The use of AgNPs/Fe3O4 nanocomposite as SERS substrate for sensing application was demonstrated with using diclofenac as a model. The detection limit and enhancement factor of the SERS-based diclofenac sensor were found to be 10-12 M and 2.6×1010, respectively. Such kind of bifunctional nanocomposite will probably help us to avoid time-consuming process to immobilize metal nanoparticles onto the surface, and also allow us to regenerate the substrate for multiple uses.

Downloads

Download data is not yet available.

References

Y. Zhang, S. U. Geißen, and C. Gal, “Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies,” Chemosphere, vol. 73, no. 8. pp. 1151–1161, 2008. doi: 10.1016/j.chemosphere.2008.07.086. DOI: https://doi.org/10.1016/j.chemosphere.2008.07.086

L. Lonappan, S. K. Brar, R. K. Das, M. Verma, and R. Y. Surampalli, “Diclofenac and its transformation products: Environmental occurrence and toxicity - A review,” Environ. Int., vol. 96, pp. 127–138, Nov. 2016, doi: 10.1016/j.envint.2016.09.014. DOI: https://doi.org/10.1016/j.envint.2016.09.014

J. A. Arancibia, M. A. Boldrini, and G.M. Escandar, “Spectrofluorimetric determination of diclofenac in the presence of α-cyclodextrin,” Talanta, vol. 52, no. 2, pp. 261–268, Jun. 2000, doi: 10.1016/S0039-9140(00)00338-6. DOI: https://doi.org/10.1016/S0039-9140(00)00338-6

T. T. K. Nguyen, T.T. Vu, G. Anquetin, H.V. Tran, S. Reisberg, V. Noel. G. Mattana, Q.V. Nguyen, Tran Dai Lam, M.C. Pham, and B. Piro, “Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection,” Biosens. Bioelectron., vol. 97, pp. 246–252, 2017, doi: 10.1016/j.bios.2017.06.010. DOI: https://doi.org/10.1016/j.bios.2017.06.010

M. Huebner, E. Weber, R. Niessner, S. Boujday, and D. Knopp, “Rapid analysis of diclofenac in freshwater and wastewater by a monoclonal antibody-based highly sensitive ELISA,” Anal. Bioanal. Chem., vol. 407, no. 29, pp. 8873–8882, Nov. 2015, doi: 10.1007/s00216-015-9048-9. DOI: https://doi.org/10.1007/s00216-015-9048-9

P. L. Kole, J. Millership, and J. C. McElnay, “Determination of diclofenac from paediatric urine samples by stir bar sorptive extraction (SBSE)–HPLC–UV technique,” Talanta, vol. 85, no. 4, pp. 1948–1958, Sep. 2011, doi: 10.1016/j.talanta.2011.07.016. DOI: https://doi.org/10.1016/j.talanta.2011.07.016

H. He, D.-W. Sun, H. Pu, L. Chen, and L. Lin, “Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 5, pp. 770–793, Mar. 2019, doi: 10.1080/10408398.2018.1528436. DOI: https://doi.org/10.1080/10408398.2018.1528436

D. Ando, T. Miyazaki, E. Yamamoto, T. Koide, and K. Izutsu, “Chemical imaging analysis of active pharmaceutical ingredient in dissolving microneedle arrays by Raman spectroscopy,” Drug Deliv. Transl. Res., vol. 12, no. 2, pp. 426–434, Feb. 2022, doi: 10.1007/s13346-021-01052-y DOI: https://doi.org/10.1007/s13346-021-01052-y

D. Deng, H. Yang, C. Liu, K. Zhao, J. Li, and A. Deng, “Ultrasensitive detection of diclofenac in water samples by a novel surface-enhanced Raman scattering (SERS)-based immunochromatographic assay using AgMBA@SiO2-Ab as immunoprobe,” Sensors Actuators B Chem., vol. 283, pp. 563–570, Mar. 2019, doi: 10.1016/j.snb.2018.12.076. DOI: https://doi.org/10.1016/j.snb.2018.12.076

J. Ma, K. Wang, M. Zhan, “Growth Mechanism and Electrical and Magnetic Properties of Ag–Fe3O4 Core–Shell Nanowires,” ACS Appl. Mater. Interfaces 2015, vol. 7, no. 29, pp. 16027–16039, Jul. 2015, doi: 10.1021/acsami.5b04342 DOI: https://doi.org/10.1021/acsami.5b04342

R. Chopra, M. Kumar, V. Bhalla, “Fabrication of Polythiophene-Supported Ag@Fe3O4 Nanoclusters and Their Utilization as Photocatalyst in Dehydrogenative Coupling Reactions,” ACS Sustainable Chem. Eng., vol. 6, no. 6, pp. 7412–7419, May 2018, doi: 10.1021/acssuschemeng.7b04891 DOI: https://doi.org/10.1021/acssuschemeng.7b04891

G.B. Oliveira-Filho, J.J. Atoche-Medrano, F.F.H. Aragon, J.C. Mantilla Ochoa, D.G. Pacheco-Salazar, S.W. da Silva, J.A.H. Coaquira, “Core-shell Au/Fe3O4 nanocomposite synthesized by thermal decomposition method: Structural, optical, and magnetic properties,” Appl. Surf. Sci., vol. 563, pp. 150290, Oct. 2021, doi: 10.1016/j.apsusc.2021.150290 DOI: https://doi.org/10.1016/j.apsusc.2021.150290

T. Jiang, Z. Wang, Z. Luo. J. He, C. Hu, X. Xiang, Y. Cao, G. Fang, K. Peng, C. Liu, “Constructing heterogeneous conductive network with core-shell Ag@Fe3O4 for dual-band effective microwave absorption,” Appl. Surf.Sci., vol.610, pp. 155231, Feb 2023, doi: 10.1016/j.apsusc.2022.155231 DOI: https://doi.org/10.1016/j.apsusc.2022.155231

Z.Y. Bao, J. Dai, D.Y. Lei, and Y. Wu, “Maximizing surface-enhanced Raman scattering sensitivity of surfactant-free Ag-Fe3O4 nanocomposites through optimization of silver nanoparticle density and magnetic self-assembly,” J. Appl. Physics, vol. 114, pp. 124305, Sep. 2013, doi: 10.1063/1.4823732. DOI: https://doi.org/10.1063/1.4823732

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Realization of high sensitive SERS substrates with one-pot fabrication of Ag–Fe3O4 nanocomposites,” J. Colloid Interface Sci., vol. 438, pp. 116–121, Jan. 2015, doi: 10.1016/j.jcis.2014.09.015. DOI: https://doi.org/10.1016/j.jcis.2014.09.015

Y. Shan, Y. Yang, Y. Cao, and Z. Huang, “Facile solvothermal synthesis of Ag/Fe 3 O 4 nanocomposites and their SERS applications in on-line monitoring of pesticide contaminated water,” RSC Adv., vol. 5, no. 124, pp. 102610–102618, 2015, doi: 10.1039/C5RA17606A. DOI: https://doi.org/10.1039/C5RA17606A

R.D. Ávila-Avilés, N. Torres-Gómez, M.A. Camacho-López, and A.R. Vilchis-Nestor, “SERS activity of hybrid nano/microstructures Ag-Fe3O4 based on Dimorphotheca ecklonis pollen grains as bio-template,” Sci. Rep., vol.10, pp. 16633, Oct. 2020, doi: 10.1038/s41598-020-73615-x DOI: https://doi.org/10.1038/s41598-020-73615-x

P. Joshi, Y. Zhou, T.O. Ahmadov, and P. Zhang, “Quantitative SERS-based detection using Ag–Fe3O4 nanocomposites with an internal reference,” J. Mater. Chem. C, vol. 2, no. 46, pp. 9964-9968, Oct. 2014, doi: 10.1039/C4TC01550A DOI: https://doi.org/10.1039/C4TC01550A

J. Huang, Y. Sun, S. Huang, K. Yu, Q. Zhao, F. Peng, H. Yu, H. Wang, and J. Yang, “Crystal engineering and SERS properties of Ag–Fe3O4 nanohybrids: from heterodimer to core–shell nanostructures,” J. Mater. Chem. , vol. 21, no. 44, pp. 17930-17937, Oct. 2011, doi: 10.1039/C1JM13045E DOI: https://doi.org/10.1039/c1jm13045e

C.V. Khedkar, N.D. Khupse, B.R. Thombare, P.R. Dusane, G. Lole, R.S. Devan, A.S. Deshpande, S.I. Patil, “Magnetically separable Ag-Fe3O4 catalyst for the reduction of organic dyes,” Chem. Phy. Lett., vol. 742, pp. 137131, Mar. 2020, doi: 10.1016/j.cplett.2020.137131 DOI: https://doi.org/10.1016/j.cplett.2020.137131

Z. Xin, K. Duan, Q. Zhuo, Q. He, X. Zhang, C. Zheng, X. Han, T. Han, Z. Fu, X. Xu, X. Zhao, “Novel nanozyme Ag/Fe3O4@h-BN with peroxidase-mimicking and oxidase-mimicking activities for dye degradation, As(V) removal and detection,” Chem. Eng. Journal, vol. 461, pp. 141589, Apr. 2023, doi: 10.1016/j.cej.2023.141589 DOI: https://doi.org/10.1016/j.cej.2023.141589

M. Kooti, S. Saiahi, and H. Motamedi, “Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity,” J. Magn. Magn. Mater., vol. 333, pp. 138–143, May 2013, doi: 10.1016/j.jmmm.2012.12.038. DOI: https://doi.org/10.1016/j.jmmm.2012.12.038

B. Chudasama, A. K. Vala, N. Andhariya, R. V. Upadhyay, and R. V. Mehta, “Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures,” Nano Res., vol. 2, no. 12, pp. 955–965, Dec. 2009, doi: 10.1007/s12274-009-9098-4. DOI: https://doi.org/10.1007/s12274-009-9098-4

Z. Çıplak and N. Yıldız, “Ag@Fe3O4 nanoparticles decorated NrGO nanocomposite for supercapacitor application,” J Alloys and Compounds, vol. 941, pp. 169024, Apr. 2023, doi: 10.1016/j.jallcom.2023.169024 DOI: https://doi.org/10.1016/j.jallcom.2023.169024

M. Żygieło, P. Piotrowski, M. Witkowski, G. Cichowicz, J. Szczytko, and A. Królikowska, “Reduced Self-Aggregation and Improved Stability of Silica-Coated Fe3O4/Ag SERS-Active Nanotags Functionalized With 2-Mercaptoethanesulfonate,” Front. Chem., vol. 9, Jun. 2021, doi: 10.3389/fchem.2021.697595. DOI: https://doi.org/10.3389/fchem.2021.697595

A. Taufiq et al., “Synthesis of Fe3O4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents,” Heliyon, vol. 6, no. 12, p. e05813, Dec. 2020, doi: 10.1016/j.heliyon.2020.e05813. DOI: https://doi.org/10.1016/j.heliyon.2020.e05813

Y. Xie, T. Chen, Y. Guo, Y. Cheng, H. Qian, and W. Yao, “Rapid SERS detection of acid orange II and brilliant blue in food by using Fe 3 O 4 @Au core–shell substrate,” Food Chemistry, vol. 270. pp. 173–180, 2019. doi: 10.1016/j.foodchem.2018.07.065. DOI: https://doi.org/10.1016/j.foodchem.2018.07.065

A. Aarthi, M. Umadevi, R. Parimaladevi, G. V. Sathe, S. Arumugam, and P. Sivaprakash, “A Negatively Charged Hydrophobic Hemi-micelle of Fe3O4/Ag MNP Role Towards SERS, Photocatalysis and Bactericidal,” J. Inorg. Organomet. Polym. Mater., vol. 31, no. 4, pp. 1469–1479, Apr. 2021, doi: 10.1007/s10904-020-01802-4. DOI: https://doi.org/10.1007/s10904-020-01802-4

Y. Zhou et al., “HS-β-cyclodextrin-functionalized Ag@Fe3O4@Ag nanoparticles as a surface-enhanced Raman spectroscopy substrate for the sensitive detection of butyl benzyl phthalate,” Anal. Bioanal. Chem., vol. 411, no. 22, pp. 5691–5701, Sep. 2019, doi: 10.1007/s00216-019-01947-3. DOI: https://doi.org/10.1007/s00216-019-01947-3

J. Wang, Z. Zhu, A. Munir, and H. S. Zhou, “Fe3O4 nanoparticles-enhanced SPR sensing for ultrasensitive sandwich bio-assay,” Talanta, vol. 84, no. 3, pp. 783–788, May 2011, doi: 10.1016/j.talanta.2011.02.020. DOI: https://doi.org/10.1016/j.talanta.2011.02.020

J. Du and C. Jing, “Preparation of Thiol Modified Fe3O4 @Ag Magnetic SERS Probe for PAHs Detection and Identification,” J. Phys. Chem. C, vol. 115, no. 36, pp. 17829–17835, Sep. 2011, doi: 10.1021/jp203181c. DOI: https://doi.org/10.1021/jp203181c

J. Wang et al., “Immobilization of Lipases on Alkyl Silane Modified Magnetic Nanoparticles: Effect of Alkyl Chain Length on Enzyme Activity,” PLoS One, vol. 7, no. 8, p. e43478, Aug. 2012, doi: 10.1371/journal.pone.0043478. DOI: https://doi.org/10.1371/journal.pone.0043478

N. Shokoofeh, Z. Moradi-Shoeili, A. S. Naeemi, A. Jalali, M. Hedayati, and A. Salehzadeh, “Biosynthesis of Fe3O4@Ag Nanocomposite and Evaluation of Its Performance on Expression of norA and norB Efflux Pump Genes in Ciprofloxacin-Resistant Staphylococcus aureus,” Biol. Trace Elem. Res., vol. 191, no. 2, pp. 522–530, Oct. 2019, doi: 10.1007/s12011-019-1632-y. DOI: https://doi.org/10.1007/s12011-019-1632-y

X.-H. Wang et al., “Synthesis and characterization of polymer-coated AgZnO nanoparticles with enhanced photocatalytic activity,” RSC Adv., vol. 4, no. 83, pp. 44011–44017, Sep. 2014, doi: 10.1039/C4RA09382H. DOI: https://doi.org/10.1039/C4RA09382H

S. Zhao et al., “Amorphizing of Ag Nanoparticles under Bioinspired One-step Assembly of Fe3O4-Ag/rGO Hybrids via Self-redox Process with Enhanced Activity,” Applied Organometallic Chemistry, vol. 32, no. 8. 2018. doi: 10.1002/aoc.4428. DOI: https://doi.org/10.1002/aoc.4428

Q. Simon et al., “Plasma-assisted synthesis of Ag/ZnO nanocomposites: First example of photo-induced H2 production and sensing,” Int. J. Hydrogen Energy, vol. 36, no. 24, pp. 15527–15537, Dec. 2011, doi: 10.1016/j.ijhydene.2011.09.045. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.045

H.-L. Liu, J.-H. Wu, J. H. Min, J. H. Lee, and Y. K. Kim, “Monosized Core–Shell Fe3O4 (Fe)/Au Multifunctional Nanocrystals,” J. Nanosci. Nanotechnol., vol. 9, no. 2, pp. 754–758, Feb. 2009, doi: 10.1166/jnn.2009.C018. DOI: https://doi.org/10.1166/jnn.2009.C018

M. E. Zilm, M. Staruch, M. Jain, and M. Wei, “An intrinsically magnetic biomaterial with tunable magnetic properties,” J. Mater. Chem. B, vol. 2, no. 41, pp. 7176–7185, Sep. 2014, doi: 10.1039/C4TB00925H. DOI: https://doi.org/10.1039/C4TB00925H

T. Yamashita and P. Hayes, “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials,” Appl. Surf. Sci., vol. 254, no. 8, pp. 2441–2449, Feb. 2008, doi: 10.1016/j.apsusc.2007.09.063.

Toru Yamashia, Peter Hayes, “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials,” Appl. Surf. Sci., vol. 254, pp. 2441-2449, Sept. 2009, doi: 10.1016/j.apsusc.2007.09.063. DOI: https://doi.org/10.1016/j.apsusc.2007.09.063

J.F. Anderson, Markus Kuhn, Ulrike Diebold, “Epitaxially grown Fe3O¬4 thin films: An XPS study,” Surface Science Spectra, vol. 4, pp. 266, Dec. 1996, doi: 10.1116/1.1247796. DOI: https://doi.org/10.1116/1.1247796

Homa Kohzadi, Mohammad Soleiman-Beigi, “XPS and structural studies of Fe3O4-PTMS-NAS@Cu as a novel magnetic natural asphalt base network and recoverable nanocatalyst for the synthesis of biaryl compounds,” Sci. Rep., vol. 11, pp. 24508, Dec. 2021, doi: 10.1038/s41598-021-04111-z. DOI: https://doi.org/10.1038/s41598-021-04111-z

A. Fini, C. Cavallari, and F. Ospitali, “Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM,” Pharmaceutics, vol. 2, no. 2, pp. 136–158, Apr. 2010, doi: 10.3390/pharmaceutics2020136. DOI: https://doi.org/10.3390/pharmaceutics2020136

Y. Quan et al., “Sulfur Vacancies‐Triggered High SERS Activity of Molybdenum Disulfide for Ultrasensitive Detection of Trace Diclofenac,” Adv. Opt. Mater., vol. 10, no. 23, p. 2201395, Dec. 2022, doi: 10.1002/adom.202201395. DOI: https://doi.org/10.1002/adom.202201395

F. Yang et al., “Establishment of the thin-layer chromatography-surface-enhanced Raman spectroscopy and chemometrics method for simultaneous identification of eleven illegal drugs in anti-rheumatic health food,” Food Biosci., vol. 49, p. 101842, Oct. 2022, doi: 10.1016/j.fbio.2022.101842. DOI: https://doi.org/10.1016/j.fbio.2022.101842

Published

12-06-2024

How to Cite

[1]
T. T. N. Nguyen, “Ag/Fe3O4 bifunctional nanocomposite for SERS detection of non-steroidal anti-inflammation drug diclofenac ”, Vietnam J. Sci. Technol., vol. 61, no. 4, Jun. 2024.

Issue

Section

Materials

Most read articles by the same author(s)