Isolation of bacteria capable of degrading organophosphate flame retardants

Thị Lan Anh Nguyen, Thi Phuong Pham, Thi Thu Hien Tran, Duc Hieu Phung, Thi Thu Lan Tran, Hai Yen Dao
Author affiliations

Authors

  • Thị Lan Anh Nguyen Faculty of Biotechnology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi; Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam https://orcid.org/0000-0001-6212-4613
  • Thi Phuong Pham Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
  • Thi Thu Hien Tran Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
  • Duc Hieu Phung Institute of Technological Science and Environment
  • Thi Thu Lan Tran Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
  • Hai Yen Dao Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2525-2518/18876

Keywords:

Achromobacter, Rhizobium, tris(1,3-dichloro-2-propyl)phosphate (TDCPP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP)

Abstract

Wastewater samples from To Lich River contaminated with organophosphate flame retardant (OPFRs) were collected and enriched in a medium supplemented with OPFR compounds. As a result, 10 bacterial strains were isolated and identified based on 16S rRNA gene sequence analysis. These bacterial strains belong to the genera Achromobacter, Pseudomonas, Bordetella, and Rhizobium.  All 10 bacterial strains exhibited the ability to degrade some OPFR compounds, but only two strains, Achromobacter sp. BWTL6 and Rhizobium sp. BWTL7, effectively degraded all 5 tested OPFR compounds. These two bacterial strains demonstrated the capability to degrade more than 70% of tris(1,3-dichloro-2-propyl)phosphate (TDCPP) (at 10 mg/L concentration) within 7 days. Furthermore, both Achromobacter sp. BWTL6 and Rhizobium sp. BWTL7 were able to utilize tris(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), tris(2-butoxyethyl) phosphate (TBEP), and trimethyl phosphate (TMP) for growth, exhibiting clear cell proliferation and OPFR removal rates ranging from 40 to 58%. In addition, bacterial strain Bordetella sp. BWTL3 degraded 61.5% of TDCPP and 97.7% of TBEP after 7 days of culture. In this study, all three bacterial strains belonging to the Achromobacter, Rhizobium and Bordetella are potential candidates for remediation of environments contaminated with OPFRs.

Downloads

Download data is not yet available.

References

1. Marklund A., Andersson B., Haglund P. - Screening of organophosphorus compounds and their distribution in various indoor environments, Chemosphere 53 (9) (2003) 1137-1146. https://doi.org/10.1016/S0045-6535(03)00666-0

2. Cristale J., Lacorte S. - Development and validation of a multiresidue method for the analysis of polybrominated diphenyl ethers, new brominated and organophosphorus flame retardants in sediment, sludge and dust, J. Chromatogr. A. 1305 (2013) 267-275. https://doi.org/10.1016/j.chroma.2013.07.028

3. Kemmlein S., Hahn O., Jann O. - Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials, Atmos. Environ. 37 (39) (2003) 5485-5493. https://doi.org/10.1016/j.atmosenv.2003.09.025

4. van der Veen I., de Boer J. - Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis, Chemosphere 88 (10) (2012) 1119-53. https://doi.org/10.1016/j.chemosphere.2012.03.067

5. Zeng X., Xu L., Hu Q., Liu Y., Hu J., Liao W., Yu Z. - Occurrence and distribution of organophosphorus flame retardants/plasticizers in coastal sediments from the Taiwan Strait in China, Mar. Pollut. Bull. 151 (2020) 110843. https://doi.org/10.1016/j.marpolbul.2019.110843

6. Lalovic B., Phillips B., Risler L.L., Howald W., Shen D.D. - Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes, Drug metabolism and disposition: the biological fate of chemicals, 32 (4) (2004) 447-54. https://doi.org/10.1124/dmd.32.4.447.

7. https://w.w.w.echa.europa.eu/documents/10162/17228/trd_rar_ireland_tccp_en.pdf, 2008 (accessed 10 April 2023).

8. Bollmann U.E., Möller A., Xie Z., Ebinghaus R., Einax J.W. - Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters, Water Res. 46 (2) (2012) 531-538. https://doi.org/10.1016/j.watres.2011.11.028

9. Reemtsma T., Quintana J.B., Rodil R., Garcı´a-López M., Rodríguez I. - Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate, TrAC, Trends Anal. Chem. 27 (2008) 727-737. https://doi.org/10.1016/j.trac.2008.07.002

10. Pantelaki I., Voutsa D. - Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment, Sci. Total Environ. 649 (2019) 247-263. https://doi.org/10.1016/j.scitotenv.2018.08.286

11. Ding J., Xu Z., Huang W., Feng L., Yang F. - Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China, Sci. Total. Environ. 554-555 (2016) 211-7. https://doi.org/10.1016/j.scitotenv.2016.02.171

12. Zhang W., Giesy J.P., Wang P. - Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges, Sci. Total Environ. 827 (2022) 154271. https://doi.org/10.1016/j.scitotenv.2022.154271

13. Xie J., Pei N., Sun Y., Chen Z., Cheng Y., Chen L., Xie C., Dai S., Zhu C., Luo X., Zhang L., Mai B. - Bioaccumulation and translocation of organophosphate esters in a Mangrove Nature Reserve from the Pearl River Estuary, South China, J. Hazard. Mater. 427 (2022) 127909. https://doi.org/10.1016/j.jhazmat.2021.127909

14. Li H., Su G., Zou M., Yu L., Letcher R.J., Yu H., Giesy J.P., Zhou B., Liu C. - Effects of Tris(1,3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription of Daphnia magna at environmentally relevant concentrations, Environ. Sci. Technol. 49 (21) (2015) 12975-12983. https://doi.org/10.1021/acs.est.5b03294

15. Yuan S., Li H., Dang Y., Liu C. - Effects of triphenyl phosphate on growth, reproduction and transcription of genes of Daphnia magna, Aquat. Toxicol. 195 (2018) 58-66. https://doi.org/10.1016/j.aquatox.2017.12.009

16. Kawagoshi Y., Nakamura S., Fukunaga I. - Degradation of organophosphoric esters in leachate from a sea-based solid waste disposal site, Chemosphere 48 (2) (2002) 219-225. https://doi.org/10.1016/S0045-6535(02)00051-6

17. Meyer J., Bester K. - Organophosphate Flame Retardants and Plasticizers in Wastewater Treatment Plants, J. Environ. Monit. 6 (2004) 599-605. https://doi.org/10.1039/b403206c

18. Gao Z., Deng Y., Hu X., Yang S., Sun C., He H. - Determination of organophosphate esters in water samples using an ionic liquid-based sol–gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector, J. Chromatogr. A. 1300 (2013) 141-150. https://doi.org/10.1016/j.chroma.2013.02.089

19. Bach E.M., Williams R.J., Hargreaves S.K., Yang F., Hofmockel K.S. - Greatest soil microbial diversity found in micro-habitats, Soil Biol. Biochem. 118 (2018) 217-226. https://doi.org/10.1016/j.soilbio.2017.12.018

20. Rangu S.S., Basu B., Muralidharan B., Tripathi S., Apte S. - Involvement of phosphoesterases in tributyl phosphate degradation in Sphingobium sp. strain RSMS, Appl. Microbiol. Biotechnol. 100 (2016). https://doi.org/10.1007/s00253-015-6979-1

21. Liu J., Lin H., Dong Y., Li B. - Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings, Environ. Pollut. 250 (2019) 284-291. https://doi.org/10.1016/j.envpol.2019.03.127

22. Kulkarni S.V., Markad V.L., Melo J.S., D'Souza S.F., Kodam K.M. - Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3, Appl. Microbiol. Biotechnol. 98 (2) (2014) 919-29. https://doi.org/10.1007/s00253-013-4938-2

23. Owen S., Jeong B.C., Poole P.S., Macaskie L.E. - Tributyl phosphate degradation by immobilized cells of a Citrobacter sp., Appl. Biochem. Biotechnol. 34 (1) (1992) 693-707. https://doi.org/10.1007/BF02920590

24. Ahire K.C., Kapadnis B.P., Kulkarni G.J., Shouche Y.S., Deopurkar R.L. - Biodegradation of tributyl phosphate by novel bacteria isolated from enrichment cultures, Biodegradation 23 (1) (2012) 165-76. https://doi.org/10.1007/s10532-011-9496-7

25. Berne C., Montjarret B., Guountti Y., Garcia D. - Tributyl phosphate degradation by Serratia odorifera, Biotechnol. Lett. 26 (8) (2004) 681-686. https://doi.org/10.1023/b:bile.0000023030.69207.c0

26. Berne C., Allainmat B., Garcia D. - Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria, Biotechnol. Lett. 27 (8) (2005) 561-6. https://doi.org/10.1007/s10529-005-2882-7

27. Rangu S.S., Hajare S.N., Sarkar S., Bhowmick S., Misra C.S., Bindal G., Singh K.K., Mukhopadhyaya R., Rath D. - Tributyl phosphate degradation by Sphingobium sp. RSMS in large-scale stirred tank reactors, Biomass Conversion and Biorefinery 14 (2022) 11707–11717. https://doi.org/10.1007/s13399-022-03441-w

28. Liu Y., Yin H., Wei K., Peng H., Lu G., Dang Z. - Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism, Chemosphere, 232 (2019) 195-203. https://doi.org/10.1016/j.chemosphere.2019.05.188

29. Truong D. A., Trinh H. T., Le G. T., Phan T. Q., Duong H. T., Tran T. T. L., Nguyen T. Q., Hoang M. T. T., Nguyen T. V. - Occurrence and ecological risk assessment of organophosphate esters in surface water from rivers and lakes in urban Hanoi, Vietnam, Chemosphere 331 (2023) 138805. https://doi.org/10.1016/j.chemosphere.2023.138805

30. Takahashi S., Satake I., Konuma I., Kawashima K., Kawasaki M., Mori S., Morino J., Mori J., Xu H., Abe K., Yamada R.H., Kera Y. - Isolation and identification of persistent chlorinated organophosphorus flame retardant-degrading bacteria, Appl. Environ. Microbiol. 76 (15) (2010) 5292-5296. https://doi.org/10.1128/AEM.00506-10

31. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. - 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol. 173(2) (1991) 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991

32. Kumar S., Stecher G., Tamura K. - MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol. 33(7) (2016) 1870-4. https://doi.org/10.1093/molbev/msw054

33. Loos R., Carvalho R., António D.C., Comero S., Locoro G., Tavazzi S., Paracchini B., Ghiani M., Lettieri T., Blaha L., Jarosova B., Voorspoels S., Servaes K., Haglund P., Fick J., Lindberg R.H., Schwesig D., Gawlik B.M. - EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents, Water Res. 47 (17) (2013) 6475-6487. https://doi.org/10.1016/j.watres.2013.08.024

34. Chaudhari T.D., Melo J.S., Fulekar M.H., D'Souza S.F. - Tributyl phosphate degradation in batch and continuous processes using Pseudomonas pseudoalcaligenes MHF ENV, Int. biodeterior. biodegrad., 74 (2012) 87-92.

35. Thomas R.A.P., Macaskie L.E. - Biodegradation of Tributyl Phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution, Environ. Sci. Technol. 30 (7) (1996) 2371-2375. https://doi.org/10.1021/ es950861l

36. Hou R., Wang Y., Zhou S., Zhou L., Yuan Y., Xu Y. - Aerobic degradation of nonhalogenated organophosphate flame esters (OPEs) by enriched cultures from sludge: Kinetics, pathways, bacterial community evolution, and toxicity evaluation, Science of The Total Environment 760 (2021) 143385. https://doi.org/10.1016/j.scitotenv. 2020.143385

37. Wang J., Khokhar I., Ren C., Li X., Wang J., Fan S., Jia Y., Yan Y. - Characterization and 16S metagenomic analysis of organophosphorus flame retardants degrading consortia, J. Hazard. Mater. 380 (2019) 120881. https://doi.org/10.1016/j.jhazmat.2019.120881

38. Wei K., Yin H., Peng H., Lu G., Dang Z. - Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygenase, Sci. Total Environ., 627 (2018) 1389-1395. https://doi.org/ 10.1016/j.scitotenv.2018.02.028

39. Kawagoshi Y., Nakamura S., Nishio T., Fukunaga I. - Isolation of aryl-phosphate ester-degrading bacterium from leachate of a sea-based waste disposal site, J. Biosci. Bioeng., 98 (6) (2004) 464-9. https://doi.org/10.1016/S1389-1723(05)00313-0

40. He J., Wang Z., Zhen F., Wang Z., Song Z., Chen J., Hrynsphan D., Tatsiana S. - Mechanisms of flame retardant tris (2-ethylhexyl) phosphate biodegradation via novel bacterial strain Ochrobactrum tritici WX3-8, Chemosphere, 311 (2023) 137071. https://doi.org/10.1016/j.chemosphere.2022.137071

Downloads

Published

28-11-2024

How to Cite

[1]
T. L. A. Nguyen, T. P. Pham, T. T. H. Tran, D. H. Phung, T. T. L. Tran, and H. Y. Dao, “Isolation of bacteria capable of degrading organophosphate flame retardants”, Vietnam J. Sci. Technol., vol. 61, no. 4, Nov. 2024.

Issue

Section

Environment