Isolation of bacteria capable of degrading organophosphate flame retardants
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18876Keywords:
Achromobacter, Rhizobium, tris(1,3-dichloro-2-propyl)phosphate (TDCPP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP)Abstract
Wastewater samples from To Lich River contaminated with organophosphate flame retardant (OPFRs) were collected and enriched in a medium supplemented with OPFR compounds. As a result, 10 bacterial strains were isolated and identified based on 16S rRNA gene sequence analysis. These bacterial strains belong to the genera Achromobacter, Pseudomonas, Bordetella, and Rhizobium. All 10 bacterial strains exhibited the ability to degrade some OPFR compounds, but only two strains, Achromobacter sp. BWTL6 and Rhizobium sp. BWTL7, effectively degraded all 5 tested OPFR compounds. These two bacterial strains demonstrated the capability to degrade more than 70% of tris(1,3-dichloro-2-propyl)phosphate (TDCPP) (at 10 mg/L concentration) within 7 days. Furthermore, both Achromobacter sp. BWTL6 and Rhizobium sp. BWTL7 were able to utilize tris(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), tris(2-butoxyethyl) phosphate (TBEP), and trimethyl phosphate (TMP) for growth, exhibiting clear cell proliferation and OPFR removal rates ranging from 40 to 58%. In addition, bacterial strain Bordetella sp. BWTL3 degraded 61.5% of TDCPP and 97.7% of TBEP after 7 days of culture. In this study, all three bacterial strains belonging to the Achromobacter, Rhizobium and Bordetella are potential candidates for remediation of environments contaminated with OPFRs.
Downloads
References
1. Marklund A., Andersson B., Haglund P. - Screening of organophosphorus compounds and their distribution in various indoor environments, Chemosphere 53 (9) (2003) 1137-1146. https://doi.org/10.1016/S0045-6535(03)00666-0
2. Cristale J., Lacorte S. - Development and validation of a multiresidue method for the analysis of polybrominated diphenyl ethers, new brominated and organophosphorus flame retardants in sediment, sludge and dust, J. Chromatogr. A. 1305 (2013) 267-275. https://doi.org/10.1016/j.chroma.2013.07.028
3. Kemmlein S., Hahn O., Jann O. - Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials, Atmos. Environ. 37 (39) (2003) 5485-5493. https://doi.org/10.1016/j.atmosenv.2003.09.025
4. van der Veen I., de Boer J. - Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis, Chemosphere 88 (10) (2012) 1119-53. https://doi.org/10.1016/j.chemosphere.2012.03.067
5. Zeng X., Xu L., Hu Q., Liu Y., Hu J., Liao W., Yu Z. - Occurrence and distribution of organophosphorus flame retardants/plasticizers in coastal sediments from the Taiwan Strait in China, Mar. Pollut. Bull. 151 (2020) 110843. https://doi.org/10.1016/j.marpolbul.2019.110843
6. Lalovic B., Phillips B., Risler L.L., Howald W., Shen D.D. - Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes, Drug metabolism and disposition: the biological fate of chemicals, 32 (4) (2004) 447-54. https://doi.org/10.1124/dmd.32.4.447.
7. https://w.w.w.echa.europa.eu/documents/10162/17228/trd_rar_ireland_tccp_en.pdf, 2008 (accessed 10 April 2023).
8. Bollmann U.E., Möller A., Xie Z., Ebinghaus R., Einax J.W. - Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters, Water Res. 46 (2) (2012) 531-538. https://doi.org/10.1016/j.watres.2011.11.028
9. Reemtsma T., Quintana J.B., Rodil R., Garcı´a-López M., Rodríguez I. - Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate, TrAC, Trends Anal. Chem. 27 (2008) 727-737. https://doi.org/10.1016/j.trac.2008.07.002
10. Pantelaki I., Voutsa D. - Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment, Sci. Total Environ. 649 (2019) 247-263. https://doi.org/10.1016/j.scitotenv.2018.08.286
11. Ding J., Xu Z., Huang W., Feng L., Yang F. - Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China, Sci. Total. Environ. 554-555 (2016) 211-7. https://doi.org/10.1016/j.scitotenv.2016.02.171
12. Zhang W., Giesy J.P., Wang P. - Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges, Sci. Total Environ. 827 (2022) 154271. https://doi.org/10.1016/j.scitotenv.2022.154271
13. Xie J., Pei N., Sun Y., Chen Z., Cheng Y., Chen L., Xie C., Dai S., Zhu C., Luo X., Zhang L., Mai B. - Bioaccumulation and translocation of organophosphate esters in a Mangrove Nature Reserve from the Pearl River Estuary, South China, J. Hazard. Mater. 427 (2022) 127909. https://doi.org/10.1016/j.jhazmat.2021.127909
14. Li H., Su G., Zou M., Yu L., Letcher R.J., Yu H., Giesy J.P., Zhou B., Liu C. - Effects of Tris(1,3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription of Daphnia magna at environmentally relevant concentrations, Environ. Sci. Technol. 49 (21) (2015) 12975-12983. https://doi.org/10.1021/acs.est.5b03294
15. Yuan S., Li H., Dang Y., Liu C. - Effects of triphenyl phosphate on growth, reproduction and transcription of genes of Daphnia magna, Aquat. Toxicol. 195 (2018) 58-66. https://doi.org/10.1016/j.aquatox.2017.12.009
16. Kawagoshi Y., Nakamura S., Fukunaga I. - Degradation of organophosphoric esters in leachate from a sea-based solid waste disposal site, Chemosphere 48 (2) (2002) 219-225. https://doi.org/10.1016/S0045-6535(02)00051-6
17. Meyer J., Bester K. - Organophosphate Flame Retardants and Plasticizers in Wastewater Treatment Plants, J. Environ. Monit. 6 (2004) 599-605. https://doi.org/10.1039/b403206c
18. Gao Z., Deng Y., Hu X., Yang S., Sun C., He H. - Determination of organophosphate esters in water samples using an ionic liquid-based sol–gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector, J. Chromatogr. A. 1300 (2013) 141-150. https://doi.org/10.1016/j.chroma.2013.02.089
19. Bach E.M., Williams R.J., Hargreaves S.K., Yang F., Hofmockel K.S. - Greatest soil microbial diversity found in micro-habitats, Soil Biol. Biochem. 118 (2018) 217-226. https://doi.org/10.1016/j.soilbio.2017.12.018
20. Rangu S.S., Basu B., Muralidharan B., Tripathi S., Apte S. - Involvement of phosphoesterases in tributyl phosphate degradation in Sphingobium sp. strain RSMS, Appl. Microbiol. Biotechnol. 100 (2016). https://doi.org/10.1007/s00253-015-6979-1
21. Liu J., Lin H., Dong Y., Li B. - Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings, Environ. Pollut. 250 (2019) 284-291. https://doi.org/10.1016/j.envpol.2019.03.127
22. Kulkarni S.V., Markad V.L., Melo J.S., D'Souza S.F., Kodam K.M. - Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3, Appl. Microbiol. Biotechnol. 98 (2) (2014) 919-29. https://doi.org/10.1007/s00253-013-4938-2
23. Owen S., Jeong B.C., Poole P.S., Macaskie L.E. - Tributyl phosphate degradation by immobilized cells of a Citrobacter sp., Appl. Biochem. Biotechnol. 34 (1) (1992) 693-707. https://doi.org/10.1007/BF02920590
24. Ahire K.C., Kapadnis B.P., Kulkarni G.J., Shouche Y.S., Deopurkar R.L. - Biodegradation of tributyl phosphate by novel bacteria isolated from enrichment cultures, Biodegradation 23 (1) (2012) 165-76. https://doi.org/10.1007/s10532-011-9496-7
25. Berne C., Montjarret B., Guountti Y., Garcia D. - Tributyl phosphate degradation by Serratia odorifera, Biotechnol. Lett. 26 (8) (2004) 681-686. https://doi.org/10.1023/b:bile.0000023030.69207.c0
26. Berne C., Allainmat B., Garcia D. - Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria, Biotechnol. Lett. 27 (8) (2005) 561-6. https://doi.org/10.1007/s10529-005-2882-7
27. Rangu S.S., Hajare S.N., Sarkar S., Bhowmick S., Misra C.S., Bindal G., Singh K.K., Mukhopadhyaya R., Rath D. - Tributyl phosphate degradation by Sphingobium sp. RSMS in large-scale stirred tank reactors, Biomass Conversion and Biorefinery 14 (2022) 11707–11717. https://doi.org/10.1007/s13399-022-03441-w
28. Liu Y., Yin H., Wei K., Peng H., Lu G., Dang Z. - Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism, Chemosphere, 232 (2019) 195-203. https://doi.org/10.1016/j.chemosphere.2019.05.188
29. Truong D. A., Trinh H. T., Le G. T., Phan T. Q., Duong H. T., Tran T. T. L., Nguyen T. Q., Hoang M. T. T., Nguyen T. V. - Occurrence and ecological risk assessment of organophosphate esters in surface water from rivers and lakes in urban Hanoi, Vietnam, Chemosphere 331 (2023) 138805. https://doi.org/10.1016/j.chemosphere.2023.138805
30. Takahashi S., Satake I., Konuma I., Kawashima K., Kawasaki M., Mori S., Morino J., Mori J., Xu H., Abe K., Yamada R.H., Kera Y. - Isolation and identification of persistent chlorinated organophosphorus flame retardant-degrading bacteria, Appl. Environ. Microbiol. 76 (15) (2010) 5292-5296. https://doi.org/10.1128/AEM.00506-10
31. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. - 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol. 173(2) (1991) 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
32. Kumar S., Stecher G., Tamura K. - MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol. 33(7) (2016) 1870-4. https://doi.org/10.1093/molbev/msw054
33. Loos R., Carvalho R., António D.C., Comero S., Locoro G., Tavazzi S., Paracchini B., Ghiani M., Lettieri T., Blaha L., Jarosova B., Voorspoels S., Servaes K., Haglund P., Fick J., Lindberg R.H., Schwesig D., Gawlik B.M. - EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents, Water Res. 47 (17) (2013) 6475-6487. https://doi.org/10.1016/j.watres.2013.08.024
34. Chaudhari T.D., Melo J.S., Fulekar M.H., D'Souza S.F. - Tributyl phosphate degradation in batch and continuous processes using Pseudomonas pseudoalcaligenes MHF ENV, Int. biodeterior. biodegrad., 74 (2012) 87-92.
35. Thomas R.A.P., Macaskie L.E. - Biodegradation of Tributyl Phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution, Environ. Sci. Technol. 30 (7) (1996) 2371-2375. https://doi.org/10.1021/ es950861l
36. Hou R., Wang Y., Zhou S., Zhou L., Yuan Y., Xu Y. - Aerobic degradation of nonhalogenated organophosphate flame esters (OPEs) by enriched cultures from sludge: Kinetics, pathways, bacterial community evolution, and toxicity evaluation, Science of The Total Environment 760 (2021) 143385. https://doi.org/10.1016/j.scitotenv. 2020.143385
37. Wang J., Khokhar I., Ren C., Li X., Wang J., Fan S., Jia Y., Yan Y. - Characterization and 16S metagenomic analysis of organophosphorus flame retardants degrading consortia, J. Hazard. Mater. 380 (2019) 120881. https://doi.org/10.1016/j.jhazmat.2019.120881
38. Wei K., Yin H., Peng H., Lu G., Dang Z. - Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygenase, Sci. Total Environ., 627 (2018) 1389-1395. https://doi.org/ 10.1016/j.scitotenv.2018.02.028
39. Kawagoshi Y., Nakamura S., Nishio T., Fukunaga I. - Isolation of aryl-phosphate ester-degrading bacterium from leachate of a sea-based waste disposal site, J. Biosci. Bioeng., 98 (6) (2004) 464-9. https://doi.org/10.1016/S1389-1723(05)00313-0
40. He J., Wang Z., Zhen F., Wang Z., Song Z., Chen J., Hrynsphan D., Tatsiana S. - Mechanisms of flame retardant tris (2-ethylhexyl) phosphate biodegradation via novel bacterial strain Ochrobactrum tritici WX3-8, Chemosphere, 311 (2023) 137071. https://doi.org/10.1016/j.chemosphere.2022.137071
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.