Impact of Hysteresis Curve on Subthreshold Swing in Ferroelectric FET

Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/18627

Keywords:

Subthreshold swing, Junctionless, Ferroelectric, Remanent polarization, Coercive field

Abstract

The changes in Subthreshold Swing (SS) were observed for changes in remanent polarization Pr and coercive field Ec, which determine the characteristics of the P-E hysteresis curve of ferroelectric in Ferrolectric FET (FeFET). A multilayer structure of Metal-Ferroelectric-Metal-Insulator-Semiconductor (MFMIS) was used for the junctionless double gate structure. To obtain the SS value, the analytical SS model was used. The ranges of 15≤Pr 30 μC/cm2 and 0.8≤Ec1.5 MV/cm, which were reasonable in various experiments and did not generate unstable regions in the relationship of drain current and gate voltage, were considered. As a result, the SS decreased as Pr decreased and Ec increased due to the capacitance change in the ferroelectric. This phenomenon is because the controllability of channel carriers by the gate voltage increases due to the increasing of change in the ferroelectric voltage for the gate voltage as Pr decreases and the memory window increases. Since the SS decreased linearly in the memory window, the SS constantly changed according to the ratio of Pr and Ec, Pr/Ec. As the ferroelectric thickness increased, the SS decreased significantly, but the change of SS with respect to the Pr/Ec was severe. In general, as the channel length decreases, SS increases. However, when the Pr/Ec decreased to 10 pF/cm, the SS tended to decrease as the channel length decreased. The reason for this can be attributed to the fact that the relative thickness of ferroelectric increases with small channel length.

Downloads

Download data is not yet available.

References

Hosseini S. A., Eskandarian A., Ghadimi A. - Three dimensional simulation of short channel effects in junction less FinFETs, Engineering Reports 4 (2022) e12481. DOI:10.1002/eng2.12481 DOI: https://doi.org/10.1002/eng2.12481

Li X., Yuan P., Li L., Liu T., Shen C., Jiang Y., Song X., Li J., Xia C. - Promising ultra-short channel transistors based on OM2S(M=Ga,In) monolayers for high performance and low power consumption, Nanoscale 15 (2023) 356-364. DOI:10.1039/d2nr04840j DOI: https://doi.org/10.1039/D2NR04840J

Tripathi S. L., Pathak P., Kumar A., Saxena S. - Improved Drain Current with Suppressed Short Channel Effect of p+ Pocket Double-Gate MOSFET in Sub-14 nm Technology Node, Silicon 14 (2022) 10881-10891. DOI:10.1007/s12633-022-01816-2 DOI: https://doi.org/10.1007/s12633-022-01816-2

Mukesh S., Zhang J. - A Review of the Gate-All-Around Nanosheet FET Process Opportunities, Electronics 11 (2022) 3589. DOI:10.3390/electronics11213589 DOI: https://doi.org/10.3390/electronics11213589

Chakrabarti H., Maity R., Baushya S., Maity N. P. - An Accurate Model of Threshold Voltage and Effect of High-k Material for Fully Depleted Graded Channel DMDG MOSFET, Silicon 14 (2022) 9763-9772. DOI:10.1007/s12633-021-01412-w DOI: https://doi.org/10.1007/s12633-021-01412-w

Kanith S., Vignesh N. A., Jana S., Prasad C. G., Konguvel E., Vimalnath S. - Negative Capacitance Ferroelectric FET Based on Short Channel Effect for Low Power Application, Silicon 14 (2022) 9569-9579. DOI:10.1007/s12633-021-01625-z DOI: https://doi.org/10.1007/s12633-021-01625-z

Kim J. Y., Choi M., Jang H. W. - Ferroelectric field effect transistors: Progress and perspective, APL Mater. 9(2021) 021102. DOI:10.1063/5.0035515 DOI: https://doi.org/10.1063/5.0035515

Yu T., Lu W., Zhao Z., Si P., Zhang K. - Negative drain-induced barrier lowering and negative differential resistance effects in negative-capacitance transistors, Microelectronics Journal 108 (2021) 104981. DOI:10.1016/j.mejo.2020.104981 DOI: https://doi.org/10.1016/j.mejo.2020.104981

Alam S. U., Uddin R., Alam M. J., Raihan A., Mahtab S. S., Bhowmik S. - Mathematical Modeling and Performance Evaluation of 3D Ferroelectric Negative Capacitance FinFET, Modeling and Simulation in Engineering 2022 (2022) 8345513. DOI:10.1155/ 2022/8345513 DOI: https://doi.org/10.1155/2022/8345513

Jung H. - Analysis of subthreshold swing in junctionless double gate MOSFET using stacked high-k gate oxide, International Journal of Electrical and Computer Engineering 11 (2021) 240-248. DOI:10.11591/ijece.v11i1.pp240-248 DOI: https://doi.org/10.11591/ijece.v11i1.pp240-248

Jung H. - Analysis of Subthreshold Swing of Junctionless Cylindrical Surrounding Gate MOSFET Using Stacked High-k Gate Oxide, Trans. on Electrical and Electronic Materials 23 (2022) 193-199. DOI:10.1007/s42341-022-00382-z DOI: https://doi.org/10.1007/s42341-022-00382-z

Nadeem M., Bernardo I. D., Wang X., Fuhrer M. S., Culcer D. - Overcoming Boltzmann’s Tyranny in a Transistor vis the Topological Quantum Field Effect, Nano Lett. 21(2021) 3155-3161. DOI:10.1021/acs.nanolett.1c00378 DOI: https://doi.org/10.1021/acs.nanolett.1c00378

Liu C., Wang Y., Sun H., Ma C., Luo Z., Wang H., Yin Y., Li X. - Positive-to-negative subthreshold swing of aMOSFET tuned by the ferroelectric switching dynamics of BiFeO3, NPG Asia Materials 13 (2021) 77. DOI:10.1038/s41427-021-00345-5 DOI: https://doi.org/10.1038/s41427-021-00345-5

Yao J., Han X., Zhang X., Liu J., Gu M., Zhang M., Yu K., Guo Y. - Investigation on the Negative Capacitance Field Effect Transistor with Dual Ferroelectric Region, Crystals 12 (2022) 1545. DOI:10.3390/crystal12111545 DOI: https://doi.org/10.3390/cryst12111545

Cho H. W., Pujar P., Choi M., Kang S., Hong S., Park J., Baek S., Kim Y., Lee J., Kim S. - Direct growth of orthorhombic Hf0.5Zr0.5O2thin films for hysteresis-free MoS2 negative capacitance field-effect transistors, npj 2D Materials and Applications 5 (2021) 46. DOI:10.1038/s41699-021-00229-w DOI: https://doi.org/10.1038/s41699-021-00229-w

Gao Z., Lyu S., Lyu H. - Frequency dependence on polarization switching measurement in ferroelectric capacitors, Journal of Semiconductors 43 (2022) 014102. DOI:10.1088/ 1674-4926/43/1/014102 DOI: https://doi.org/10.1088/1674-4926/43/1/014102

Hachemi M. B., Salem B., Consonni V., Roussel H., Garraud A., Lefevre G., Labau S., Basrour S., Bsiesy A. - Study of structural and electrical properties of ferroelectric HZO films obtained by single-target sputtering, AIP Advances 11 (2021) 085004. DOI:10.1063/5.0058656 DOI: https://doi.org/10.1063/5.0058656

Das D., Gaddam V., Jeon S. - Demonstration of High Ferroelectricity(Pr~29μC/cm2)in Zr Rich HfxZr1-xO2 Films, IEEE Electron Device Letters 41 (2020)34-37. DOI:10.1109/ LED.2019.2955198 DOI: https://doi.org/10.1109/LED.2019.2955198

Das D., Buyantogtokh B., Gaddam V., Jeon S. - Influence of High-Pressure Annealing Conditions on Ferroelectric and Interfacial Properties of Zr-rich HfxZr1-xO2Capacitors, IEEE Trans. Electron Devices 68 (2021) 1996-2002. DOI:10.1109/TED.2021.3061963 DOI: https://doi.org/10.1109/TED.2021.3061963

Chen K., Chen P., Wu Y. – Proceedings of Symposium on VLSI Circuits, IEEE (2017) T84-T85. DOI:10.23919/VLSIC.2017.8008572 DOI: https://doi.org/10.23919/VLSIC.2017.8008572

Dang Z., Lv S., Gao Z., Chen M., Xu Y., Jiang P., Ding Y., Yuan P., Wang Y., Chen Y., Luo Q. - Improved Endurance of Hf0.5Zr0.5O2-Based Ferroelectric Capacitor Through Optimizing the Ti-N Ratio in TiN Electrode, IEEE Electron Device Letters 43 (2022) 561-564. DOI:10.1109/LED.2022.3153063 DOI: https://doi.org/10.1109/LED.2022.3153063

Yuan P., Wang B., Yang Y., Lv S., Wang Y., Xu Y., Jiang P., Chen Y., Dang Z., Ding Y., Gong T., Luo Q. - Enhanced Remanent Polarization (30μC/cm2) and Retention of Ferroelectric Hf0.5Zr0.5O2 by NH3 Plasma Treatment, IEEE Electron Device Letters 43 (2022) 1045-1048. DOI:10.1109/LED.2022.3178867 DOI: https://doi.org/10.1109/LED.2022.3178867

Lin Y., Rayner G. B., Cardenas J., Franklin A. D. - Short-channel robustness from negative capacitance in 2D NC-FETs, Appl. Phys. Lett. 118 (2021) 101903. DOI:10.1063/5.0030555 DOI: https://doi.org/10.1063/5.0030555

Tu L., Wang X., Wang J., Meng X., Chu J. - Ferroelectric Negative Capacitance Field Effect Transistors, Adv. Electron. Mater. 4 (2018) 1800231. DOI:10.1002/ aelm.201800231 DOI: https://doi.org/10.1002/aelm.201800231

Kashir A., Kim H., Oh S., Hwang H. - Large Remanent Polarization in a Wake-Up Free Hf0.5Zr0.5O2Ferroelectric Film through Bulk and Interface Engineering, ACS Applied Electronic Materials 3 (2021) 629-638. DOI:10.1021/acsaelm.0c00671 DOI: https://doi.org/10.1021/acsaelm.0c00671

Asapu S., Pagaduan J. N., Zhuo Y., Moon T., Midya R., Gao D., Lee J., Wu Q., Barnell M., Gangguli S., Katsumata R., Chen Y., Xia Q., Yang J. J. - Large remanent polarization and great reliability characteristics in W/HZO/W ferroelectric capacitors,. Frontiers in Materials 9 (2022) 969188. DOI:10.3389/fmats.2022.969188 DOI: https://doi.org/10.3389/fmats.2022.969188

Khakimov R. R., Chernikova A. G., Koroleva A. A., Markeev A. M. - On the Reliability of HZO-Based Ferroelectric Capacitors: The Cases of Ru and TiN Electrodes, Nanomaterials 12 (2022) 3059. DOI:10.3390/nano12173059 DOI: https://doi.org/10.3390/nano12173059

Okuno J., Kunihiro T., Konishi K., Maemura H., Shuto Y., Sugaya F., Materano M., Ali T., Kuehnel K., Seidel K., Schroeder U., Mikolajick T., Tsukamoto M., Umebayashi T. -Proceedings of Symposium on VLSI Technology, IEEE (2020) 1-2. DOI:10.1109/VLSITechnology18217.2020.9265063 DOI: https://doi.org/10.1109/VLSITechnology18217.2020.9265063

Francois T., Grenouillet L., Coignus J., Blaise P., Carabasse C., Vaxelaire N., Magis T., Aussenac F., Loup V., Pellissier C., Slesazeck S., Havel V., Richter C., Makosiej A., Giraud B., Breyer E. T., Materano M., Chiquet P., Bocquet M., Nowak E., Schroeder U., Gaillard F. - Proceedings of 2019 IEEE International Electron DevicesMeeting (IEDM), IEEE (2019) IEDM19-362-365.DOI:10.1109/IEDM19573 2019.8993485

Liang Y., Wu J., Teng C., Ko H., Luc Q., Su C., Chang E., Lin C. - Demonstration of Highly Robust 5nm Hf0.5Zr0.5O2 Ultra-Thin Ferroelectric Capacitor by Improving Interface Quality, IEEE Electron Device Letters 42 (2021) 1299-1302. DOI:10.1109/LED.2021.3102604 DOI: https://doi.org/10.1109/LED.2021.3102604

Ding Z., Hu G., Gu J., Liu R., Wang L., Tang T. - An analytical model for channel potential and subthreshold swing of the symmetric and asymmetric double-gate MOSFETs, Microelectronics Journal 42 (2011) 515-519. DOI:10.1016/j.mejo. 2010.11.002 DOI: https://doi.org/10.1016/j.mejo.2010.11.002

Jung H. - Analytical Model of Subthreshold Swing for Junctionless Double Gate MOSFET using Ferroelectric Negative Capacitance Effect, IIUM Engineering Journal 24 (2023) 75-87. DOI:10.31436/iiumej.v24i1.2508 DOI: https://doi.org/10.31436/iiumej.v24i1.2508

Wang K., Haung Q., Su C., Chen L., Yang M., Haung R. – Impacts of Ferroelectric Parameters on the Electrical Characteristics of Fefet for Low-Power Logic and Memory Applications, Proceedings of 2021 China Semiconductor Technology International Conference (CSTIC), IEEE (2021) 1-3. DOI:10.1109/CSTIC52283.2021.9461542 DOI: https://doi.org/10.1109/CSTIC52283.2021.9461542

Boscke T. S., Muller J., Brauhaus D., Schroder U., Bottger U. - Ferroelectricity in hafnium oxide thin films, Applied Physics Letters 99 (2011) 102903. DOI:10.1063/ 1.3634052

Kim H., Hong D., Yoo J., Lee H. - Effect of Process Temperature on Density and Electrical Characteristics of Hf0.5Zr0.5O2, Thin Films Prepared by Plasma-Enhanced Atomic layer Deposition, Nanomaterials 12 (2022) 548. DOI:10.3390/nano120330548 DOI: https://doi.org/10.3390/nano12030548

Downloads

Published

23-02-2024

How to Cite

[1]
H. Jung, “Impact of Hysteresis Curve on Subthreshold Swing in Ferroelectric FET”, Vietnam J. Sci. Technol., vol. 62, no. 1, pp. 156–169, Feb. 2024.

Issue

Section

Electronics - Telecommunication