Synthesis of hydroxyapatite and strontium-substituted hydroxyapatite for bone replacement and osteoporosis treatment

Le Thi Bang, Nguyen Van Ha, Bui Duc Long, Nguyen T. Hong Nhung
Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/18533

Keywords:

Biomedical application, Hydroxyapatite, Strontium, Osteoporosis treatment

Abstract

Hydroxyapatite (HAp) is an inorganic component exhibiting bioactivity similar to that of natural bone. However, it is not resorbed by osteoclasts during bone remodelling due to its lack of bio-resorption property. This can be enhanced by the substitution of other element presented in bone mineral. In this research work, hydroxyapatite (HAp) and strontium-substituted hydroxyapatite (Sr-HAp) were synthesized by a precipitation method. Calcium nitrate tetra hydrate [Ca(NO3)2•4H2O], disodium hydrogen phosphate (Na2HPO4), and Strontium nitrate [Sr(NO3)2] were used as Ca, PO4 and Sr sources, respectively. Molar ratio Ca/P=1.67 was used to synthesize HAp, where (Ca+Sr)/P=1.67 was used to synthesize strontium substituted-HAp (Sr-HAp). The reaction was carried out at room temperature. The results show that pure HAp and Sr-HAp were formed with nanometer-sized particles. Sr substitution in the HAp lattice results in an increase in both the lattice disorder and crystal aspect ratio. The results of in vitro bioactive testing using simulated bodily fluid also showed that both HAp and Sr-HAp have high bioactive, with the Sr-HAp sample having the greater bioactive. Therefore, HAp and Sr-HAp have great potential for biological applications.

Downloads

Download data is not yet available.

References

Ishikawa K., Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions. Materials. 3 (2) (2010), 1138-1155. 10.3390/ma3021138. DOI: https://doi.org/10.3390/ma3021138

Ishikawa K., Carbonate Apatite Bone Replacement, in Handbook of Bioceramics and Biocomposites, I.V. Antoniac, Editor 2016, Springer International Publishing: Cham. p. 213-232. DOI: https://doi.org/10.1007/978-3-319-12460-5_8

Ishikawa K. and Hayashi K., Carbonate apatite artificial bone. Science and Technology of Advanced Materials. 22 (1) (2021), 683-694. 10.1080/14686996.2021.1947120. DOI: https://doi.org/10.1080/14686996.2021.1947120

Madupalli H., Pavan B., and Tecklenburg M. M. J., Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. Journal of Solid State Chemistry. 255 (2017), 27-35. https://doi.org/10.1016/j.jssc.2017.07.025. DOI: https://doi.org/10.1016/j.jssc.2017.07.025

Arkin V. H., Narendrakumar U., Madhyastha H., and Manjubala I., Characterization and In Vitro Evaluations of Injectable Calcium Phosphate Cement Doped with Magnesium and Strontium. ACS Omega. 6 (4) (2021), 2477-2486. 10.1021/acsomega.0c03927. DOI: https://doi.org/10.1021/acsomega.0c03927

Bang L. T., Ramesh S., Purbolaksono J., Ching Y. C., Long B. D., Chandran H., and Othman R., Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method. Materials & Design. 87 (2015), 788-796. https://doi.org/10.1016/j.matdes.2015.08.069. DOI: https://doi.org/10.1016/j.matdes.2015.08.069

Kim Y., Kwon S., and Roh Y., Effect of Divalent Cations (Cu, Zn, Pb, Cd, and Sr) on Microbially Induced Calcium Carbonate Precipitation and Mineralogical Properties. Frontiers in Microbiology. 12 (2021). 10.3389/fmicb.2021.646748. DOI: https://doi.org/10.3389/fmicb.2021.646748

Kołodziejska B., Stępień N., and Kolmas J., The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Int J Mol Sci. 22 (12) (2021), 6564. 10.3390/ijms22126564. DOI: https://doi.org/10.3390/ijms22126564

Karunakaran G., Cho E.-B., Kumar G. S., Kolesnikov E., Janarthanan G., Pillai M. M., Rajendran S., Boobalan S., Sudha K. G., and Rajeshkumar M. P., Mesoporous Mg-doped hydroxyapatite nanorods prepared from bio-waste blue mussel shells for implant applications. Ceramics International. 46 (18, Part A) (2020), 28514-28527. https://doi.org/10.1016/j.ceramint.2020.08.009. DOI: https://doi.org/10.1016/j.ceramint.2020.08.009

Wu Q., Hu L., Yan R., Shi J., Gu H., Deng Y., Jiang R., Wen J., and Jiang X., Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration. Bone Research. 10 (1) (2022), 55. 10.1038/s41413-022-00224-x. DOI: https://doi.org/10.1038/s41413-022-00224-x

Stipniece L., Wilson S., Curran J. M., Chen R., Salma-Ancane K., Sharma P. K., Meenan B. J., and Boyd A. R., Strontium substituted hydroxyapatite promotes direct primary human osteoblast maturation. Ceramics International. 47 (3) (2021), 3368-3379. https://doi.org/10.1016/j.ceramint.2020.09.182. DOI: https://doi.org/10.1016/j.ceramint.2020.09.182

Ishikawa K., Matsuya S., Miyamoto Y., and Kawate K., 9.05 - Bioceramics, in Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, Editors. 2003, Pergamon: Oxford. p. 169-214. DOI: https://doi.org/10.1016/B0-08-043749-4/09146-1

Cullity B. D., Elements of X-Ray Diffraction, 2nd ed., 1978, Addison-Wesley: Philipines.

Kokubo T. and Takadama H., Simulated Body Fluid (SBF) as a Standard Tool to Test the Bioactivity of Implants, in Handbook of Biomineralization2007. p. 97-109.

Capuccini C., Torricelli P., Boanini E., Gazzano M., Giardino R., and Bigi A., Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res A. 89 (3) (2009), 594-600. DOI: https://doi.org/10.1002/jbm.a.31975

Bigi A., Boanini E., Capuccini C., and Gazzano M., Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chimica Acta. 360 (3) (2007), 1009-1016. https://doi.org/10.1016/j.ica.2006.07.074. DOI: https://doi.org/10.1016/j.ica.2006.07.074

Kavitha M., Subramanian R., Narayanan R., and Udhayabanu V., Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals. Powder Technology. 253 (2014), 129-137. https://doi.org/10.1016/j.powtec.2013.10.045. DOI: https://doi.org/10.1016/j.powtec.2013.10.045

Sakai A., Valanezahad A., Ozaki M., Ishikawa K., and Matsuya S., Preparation of Sr-containing carbonate apatite as a bone substitute and its properties. Dent Mater J. 31 (2) (2012), 197-205. DOI: https://doi.org/10.4012/dmj.2011-177

Hajji H., Le Gallet S., Saviot L., Ben Salem E., and Millot N., Mechanosynthesis of carbonate and lithium co-substituted hydroxyfluorapatite. Materials Research Bulletin. 150 (2022), 111750. https://doi.org/10.1016/j.materresbull.2022.111750. DOI: https://doi.org/10.1016/j.materresbull.2022.111750

Terra J., Dourado E. R., Eon J.-G., Ellis D. E., Gonzalez G., and Rossi A. M., The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Physical Chemistry Chemical Physics. 11 (3) (2009), 568-577. 10.1039/b802841a. DOI: https://doi.org/10.1039/B802841A

Chen S., Pujari-Palmer S., Rubino S., Westlund V., Ott M., Engqvist H., and Xia W., Highly repeatable synthesis of nHA with high aspect ratio. Materials Letters. 159 (2015), 163-167. https://doi.org/10.1016/j.matlet.2015.06.086. DOI: https://doi.org/10.1016/j.matlet.2015.06.086

Abert J., Bergmann C., and Fischer H., Wet chemical synthesis of strontium-substituted hydroxyapatite and its influence on the mechanical and biological properties. Ceramics International. 40 (7, Part A) (2014), 9195-9203. https://doi.org/10.1016/j.ceramint.2014.01.138. DOI: https://doi.org/10.1016/j.ceramint.2014.01.138

Suganthi R. V., Elayaraja K., Joshy M. I. A., Chandra V. S., Girija E. K., and Kalkura S. N., Fibrous growth of strontium substituted hydroxyapatite and its drug release. Materials Science and Engineering: C. 31 (3) (2011), 593-599. https://doi.org/10.1016/j.msec.2010.11.025. DOI: https://doi.org/10.1016/j.msec.2010.11.025

Kokubo T. and Takadama H., Simulated Body Fluid (SBF) as a Standard Tool to Test the Bioactivity of Implants, 2008. p. 97-109. DOI: https://doi.org/10.1002/9783527619443.ch51

Ressler A., Žužić A., Ivanišević I., Kamboj N., and Ivanković H., Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceramics. 6 (2021), 100122. https://doi.org/10.1016/j.oceram.2021.100122. DOI: https://doi.org/10.1016/j.oceram.2021.100122

Downloads

Published

24-07-2024

How to Cite

[1]
L. T. Bang, N. V. Ha, B. D. Long, and N. T. Hong Nhung, “Synthesis of hydroxyapatite and strontium-substituted hydroxyapatite for bone replacement and osteoporosis treatment”, Vietnam J. Sci. Technol., vol. 61, no. 4, Jul. 2024.

Issue

Section

Materials