Mix-mode fracture of microplates
Author affiliations
Keywords:
Size-effect, microplates, couple stress, crack, phase-fieldAbstract
This paper studies the crack propagation of microplates in mix-mode based on a modified couple stress theory (MCST) and the phase-field method. Compared to the stress couple hypothesis, the MCST contains many novel aspects, most notably the symmetry of the couple stress tensor and the involvement of a single internal length scale parameter. These features make the modified couple stress theory easier to use. The formulas are established based on the finite element method (FEM). When calculated using the MCST versus classical theory (regardless of size effect), the calculation results unmistakably demonstrate the differences in the mechanical characteristics of the system during the crack development. The difference is demonstrated by specific examples, with clear explanations and many physical meanings. This work will be helpful for researchers studying the process of microstructural fracture formation.
Downloads
References
Fleck N. A., Muller G. M., Ashby M. F. and Hutchinson J. W. - Strain gradient plasticity: Theory and experiment, Acta Metallurgica et Materialia 42 (2) (1994) 475–487. https://doi.org/10.1016/0956-7151(94)90502-9.
Stölken J. S. and Evans A. G. - A microbend test method for measuring the plasticity length scale, Acta Materialia 46 (1998) 5109–5115. https://doi.org/10.1016/S1359-6454(98)00153-0.
Stelmashenko N. A., Walls M. G., Brown L. M. and Milman Y. V. - Microindentations on W and Mo oriented single crystals: An STM study, Acta Metallurgica et Materialia 41 (10) (1993) 2855–2865. https://doi.org/10.1016/0956-7151(93)90100-7.
Nix W. D. and Gao H. - Indentation size effects in crystalline materials: A law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids 46 (3) (1998) 411–425. https://doi.org/10.1016/S0022-5096(97)00086-0.
Poole W. J., Ashby M. F. and Fleck N. A. - Micro-hardness of annealed and work-hardened copper polycrystals, Scripta Materialia 34 (4) (1996) 559–564. https://doi.org/10.1016/1359-6462(95)00524-2.
Lam D. C. C., Yang F., Chong A. C. M., Wang J. and Tong P. - Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids 51 (8) (2003) 1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
Cuenot S., Frétigny C., Demoustier-Champagne S. and Nysten B. - Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Physical Review B 69 (16) (2004) 165410. https://doi.org/10.1103/PhysRevB.69.165410.
McFarland A. W. and Colton J. S. - Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics Microengineering 15 (5) (2005) 1060–1067. https://doi.org/10.1088/0960-1317/15/5/024.
Cosserat E. and Cosserat F. - Théorie des Corps déformables, Nature 81 (67) (1909). https://doi.org/10.1038/081067a0.
Li X. F., Wang B. L. and Lee K. Y. - Size Effect in the Mechanical Response of Nanobeams, Journal of Advanced Research in Mechanical Engineering 1 (2010) 4-16.
Eringen A. C. and Suhubi E. S. - Nonlinear theory of simple micro-elastic solids—I, International Journal of Engineering Science 2 (2) (1964) 189–203. https://doi.org/10.1016/0020-7225(64)90004-7.
Eringen A. C. - On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54 (9) (1983) 4703–4710. https://doi.org/10.1063/1.332803.
Koiter W. T. - Couple Stresses in the Theory of Elasticity, I and II, Proceedings Series B, Koninklijke Nederlandse Akademie van Wetenschappen Vol. 67, 1964, pp. 17–44.
Mindlin R. D. and Tiersten H. F. - Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and analysis 11 (1) (1962) 415–448. https://doi.org/10.1007/BF00253946.
Atkinson C. and Leppington F. G. - Some calculations of the energy-release rate G for cracks in micropolar and couple-stress elastic media, International Journal of Fracture 10 (4) (1974) 599–602. https://doi.org/10.1007/BF00155265.
Atkinson C. and Leppington F. G. - The effect of couple stresses on the tip of a crack, International Journal of Solids and Structures 13 (11) (1977) 1103–1122. https://doi.org/10.1016/0020-7683(77)90080-4.
Homayounfard M. and Daneshmehr A. R. - Comments on ‘Size-dependent energy release rate formulation of notched beams based on a modified couple stress theory’ by Sherafatnia et al. [Engng. Fract. Mech. 116 (2014) 80–91]”, Engineering Fracture Mechanics 141 (2015) 120–123. https://doi.org/10.1016/j.engfracmech.2015.04.024.
Gourgiotis P. A. and Georgiadis H. G. - An approach based on distributed dislocations and disclinations for crack problems in couple-stress elasticity, International Journal of Solids and Structures 45 (21) (2008) 5521–5539. https://doi.org/10.1016/j.ijsolstr.2008.05.012.
Baxevanakis K. P. and Georgiadis H. G. - A displacement-based formulation for interaction problems between cracks and dislocation dipoles in couple-stress elasticity, International Journal of Solids and Structures 159 (2019) 1–20. https://doi.org/10.1016/j.ijsolstr.2018.09.015.
Placidi L., Misra A. and Barchiesi E. - Two-dimensional strain gradient damage modeling: a variational approach, Zeitschrift für angewandte Mathematik und Physik 69 (3) (2018) 56. https://10.1007/s00033-018-0947-4.
Placidi L. and Barchiesi E. - Energy approach to brittle fracture in strain-gradient modelling, Proccedings of the Royal Society 474 (2210) (2018) 20170878. https://10.1098/rspa.2017.0878.
Suh H. S., Sun W. and O’Connor D. T. - A phase field model for cohesive fracture in micropolar continua, Computer Methods in Applied Mechanics and Engineering 369 (2020)113181. https://doi.org/10.1016/j.cma.2020.113181.
Thom D. V., Duc D. H., Minh P. V. and Tung N. S. - Finite Element Modelling for Free Vibration Response of Cracked Stiffened Fgm Plates, Vietnam Journal of Science and Technology 58 (1) (2020) 119. https://10.15625/2525-2518/58/1/14278.
Makvandi R., Duczek S. and Juhre D. - A phase-field fracture model based on strain gradient elasticity, Engineering Fracture Mechanics 220 (2019) 106648. https://doi.org/10.1016/j.engfracmech.2019.106648.
Kiendl J., Ambati M., Lorenzis L. D., Gomez H. and Reali A. - Phase-field description of brittle fracture in plates and shells, Computer Methods in Applied Mechanics and Engineering 312 (2016) 374–394. https://doi.org/10.1016/j.cma.2016.09.011.
Thom D. V., Zenkour A. M. and Duc D. H. - Buckling of cracked FG plate resting on elastic foundation considering the effect of delamination phenomenon, Composite Structures 273 (2021) 114278. https://doi.org/10.1016/j.compstruct.2021.114278.
Lo Y. S., Borden M. J., Ravi-Chandar K. and Landis C. M. - A phase-field model for fatigue crack growth, Journal of the Mechanics and Physics of Solids 132 (2019) 103684. https://doi.org/10.1016/j.jmps.2019.103684.
Bourdin B., Francfort G. A. and Marigo J. J. - The Variational Approach to Fracture, Journal of Elasticity 91 (1) (2008) 5–148. https://10.1007/s10659-007-9107-3.
Borden M. J., Verhoosel C. V., Scott M. A., Hughes T. J. R. and Landis C. M. - A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering 217–220 (2012) 77–95. https://doi.org/10.1016/j.cma.2012.01.008.
Do T. V., Duc D. H., Duc N. D. and Tinh B. Q. - Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface, Composite Structures 182 (2017) 542–548. https://doi.org/10.1016/j.compstruct.2017.09.059.
Nam V. H., Duc D. H., Khoa N. M., Thom D. V. and Hong T. T. - Phase-field buckling analysis of cracked stiffened functionally graded plates, Composite Structures 217 (2019) 50–59. https://doi.org/10.1016/j.compstruct.2019.03.014.
Yang F., Chong A. C. M., Lam D. C. C. and Tong P. - Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures 39 (10) (2022) 2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
Dehrouyeh-Semnani A. M. - A discussion on different non-classical constitutive models of microbeam, Int. J. Eng. Sci. 85 (2014) 66–73. https://doi.org/10.1016/j.ijengsci.2014.07.008.
Garg N. and Han C. S. - A penalty finite element approach for couple stress elasticity, Computational Mechanics 52 (3) (2013) 709–720. https://10.1007/s00466-013-0842-y.
Francfort G. A. and Marigo J. J. - Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids 46 (8) (1998) 1319–1342. https://10.1016/S0022-5096(98)00034-9.
Miehe C., Welschinger F. and Hofacker M. - Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering 83 (10) (2010) 1273–1311. https://10.1002/nme.2861.
Miehe C., Hofacker M. and Welschinger F. - A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering 199 (45–48) (2010) 2765–2778. https://10.1016/j.cma.2010.04.011.
Sargado J. M., Keilegavlen E., Berre I. and Nordbotten J. M. - High-accuracy phase-field models for brittle fracture based on a new family of degradation functions, Journal of the Mechanics and Physics of Solids 111 (2018) 458–489. https://doi.org/10.1016/j.jmps.2017.10.015.
Fish J. and Belytschko T. - A First Course in Finite Elements. John Wiley & Sons Ltd, 2007.
Ambati M., Gerasimov T. and Lorenzis L. D. - A review on phase-field models of brittle fracture and a new fast hybrid formulation, Computational Mechanics 55 (2015) 383–405. https://doi.org/10.1007/s00466-014-1109-y.
Duc H. D., Ashraf M. Z. and Do V. T. - Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects, The European Physical Journal Plus 137 (2022) 447. https://doi.org/10.1140/epjp/s13360-022-02631-9.
Nguyen C. T., Pham H. C., Ashraf M. Z., Duc H. D. and Phung V. M. - Finite element modeling of the bending and vibration behavior of three-layer composite plates with a crack in the core layer, Composite Structures 305 (2023) 116529. https://doi.org/10.1016/j.compstruct.2022.116529.
Thom V. D., Duc H. D., Nguyen C. T. and Duc N. D. - Thermal buckling analysis of cracked functionally graded plates, International Journal of Structural Stability and Dynamics 22 (8) (2022) 2250089. https://doi.org/10.1142/S0219455422500894.
Cong P. H., Duc D. H. and Thom D. V.- Phase field model for fracture based on modified couple stress, Engineering Fracture Mechanics 269, (2022) 108534. https://doi.org/10.1016/j.engfracmech.2022.108534.
Duc D. H., Thom D. V. and Phuc P. M. - Buckling analysis of variable thickness cracked nanoplates considerting the flexoelectric effect, Transport and Communications Science Journal 73 (5) (2022) 470-485. https://doi.org/10.47869/tcsj.73.5.3.
Duc N. D., Truong T. D., Thom D. V. and Duc D. H. - On the buckling behavior of multi-cracked FGM plates, Proceedings of the International Conference on Advances in Computational Mechanics, 2017, pp. 29–45. https://doi.org/10.1007/978-981-10-7149-2-3.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.