Preparation of expandable flake-graphites with different particle sizes and their flame-retardant application for polypropylene
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/17531Keywords:
Graphite, flake-graphite, flame retardant , polypropyleneAbstract
Bisulfate intercalated graphites with different particle sizes were prepared by a chemically oxidative method using natural flaky graphites as raw materials. The morphology and structure of the expandable graphites were confirmed by Fourier transform infrared spectroscopy, X-ray diffraction patterns, and scanning electron microscope. The effect of the particle size on the expanded volume was also investigated. Expandable graphite with +100 mesh particle size (EG100) showed the highest expanded volume of 225 mL/g. Moreover, a combination of expandable graphite, red phosphorus (RP), and melamine cyanurate (MC) into a polypropylene (PP) matrix exhibited a synergistic flame retardant effect. The composite loading EG100, RP, and MC with a mass ratio of 1:1:1 and a total filler content of 18 wt.% achieved a UL94 V-0 rating and a limiting oxygen index (LOI) of 28.9 %. The effect of particle size of expandable graphite on the mechanical properties was also evaluated.
Downloads
References
Lin S., Dong L., Zhang J., Lu H. - Room-Temperature Intercalation and 1000-Fold Chemical Expansion for Scalable Preparation of High-Quality Graphene, Chem. Mater. 28 (2016) 2138-2146. doi.org/10.1021/acs.chemmater.5b05043
Tang Y., Peng P., Wang S., Liu Z., Zu X., Yu Q. - Continuous Production of Graphite Nanosheets by Bubbling Chemical Vapor Deposition Using Molten Copper, Chem. Mater. 29 (2017) 8404-8411. doi.org/10.1021/acs.chemmater.7b02958
Zhan H., Zhang Y., Bell J. M., Gu Y. - Suppressed Thermal Conductivity of Bilayer Graphene with Vacancy-Initiated Linkages,J. Phys. Chem. C119 (2015) 1748-1752. doi.org/10.1021/jp5117905
Wang H., Wei C., Zhu K., Zhang Y., Gong C., Guo J., Zhang J., Yu L., Zhang J. - Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films,ACS Appl. Mater. Interfaces 9 (2017) 34456-34466. doi.org/10.1021/acsami.7b09891
Cheng X., Li G., Yu G., Li Y., Han J. - Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials,J. Mater. Sci.52 (2017) 12370-12379.
Xu T., Li Y., Chen J., Liu J. - Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material, Sol. Energy Mater. Sol. Cells 169 (2017) 215-221. doi.org/10.1016/j.solmat.2017.05.035
Chen L., Wang Y. Z. - A review on flame retardant technology in China. Part I: development of flame retardants, Polym. Adv. Technol. 21 (2010) 1-26. doi.org/10.1002/pat.1550
Duquesne S., Bras M. L., Bourbigot S., Delobel R., Vezin H., Camino G., Eling B., Lindsay C., Roels T. - Expandable graphite: a fire retardant additive for polyurethane coatings, Fire Mater. 27 (2003) 103-117. doi.org/10.1002/fam.812
Dresselhaus M. S., Dresselhaus G. - Intercalation compounds of graphite. Adv. Phys. 30 (1981) 139-326. doi.org/10.1080/00018738100101367
Shin Y. R., Jung S. M., Jeon I. Y., Baek J. B. - The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture, Carbon 52 (2013) 493-498. doi.org/10.1016/j.carbon.2012.10.001
Focke W. W., Badenhorst H., Mhike W., Kruger H. J., Lombaard D. - Characterization of commercial expandable graphite fire retardants, Thermochim. Acta 584 (2014) 8-16. doi.org/10.1016/j.tca.2014.03.021
Kovtyukhova N. I., Wang Y., Berkdemir A., Cruz-Silva R., Terrones M., Crespi V. H., Mallouk T. E. - Non-oxidative intercalation and exfoliation of graphite by Brønsted acids, Nat. Chem. 6 (2014) 957-973. doi.org/10.1038/nchem.2054
Hong X., Chung D. D. L. - Exfoliated graphite with relative dielectric constant reaching 360, obtained by exfoliation of acidintercalated graphite flakes without subsequent removal of the residual acidity, Carbon 91 (2015) 1-10. doi.org/10.1016/ j.carbon.2015.04.042
Yuan Y., Yang H., Yu B., Shi Y., Wang W., Song L., Hu Y., Zhang Y. - Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites, Ind. Eng. Chem. Res. 55 (2016) 10813-10822. doi.org/10.1021/acs.iecr.6b02942
Chung D. D. L. - A review of exfoliated graphite, J. Mater. Sci. 51 (2016) 554-568. doi.org/10.1007/s10853-015-9284-6
Sorokina N. E., Maksimova N. V., Nikitin A. V., Shornikova O. N., Avdeev V. V. - Synthesis of intercalation compounds in the graphite−HNO3−H3PO4 system. Inorg. Mater. 37 (2001) 584-590. doi.org/10.1023/A:1017512216205
Saidaminov M. I., Maksimova N. V., Zatonskih P. V., Komarov A. D., Lutfullin M. A., Sorokina N. E., Avdeev V. V. - Thermal decomposition of graphite nitrate, Carbon 59 (2013) 337-343. doi.org/10.1016/j.carbon.2013.03.028
Li J., Li J. H., Li M. - Ultrasound irradiation prepare sulfur-free and lower exfoliate-temperature expandable graphite, Mater. Lett. 62 (2008) 2047-2049. doi.org/10.1016/ j.matlet.2007.11.011
Wei X. H., Liu L., Zhang J. X., Shi J. L., Guo Q. G. - The preparation and morphology characteristics of exfoliated graphite derived from HClO4-graphite intercalation compounds, Mater. Lett. 64 (2010) 1007-1009. doi.org/10.1016/j.matlet.2009.11.025
Yu X. J., Wu J., Zhao Q., Cheng X. W. - Preparation and characterization of sulfur-free exfoliated graphite with large exfoliated volume, Mater. Lett. 73 (2012) 11-13. doi.org/10.1016/j.matlet.2011.11.078
Zhao Q., Cheng X. W., Wu J., Yu X. J. - Sulfur-free exfoliated graphite with large exfoliated volume: Preparation, characterization and its adsorption performance, J. Ind. Eng. Chem. 20 (2014) 4028-4032. doi.org/10.1016/j.jiec.2014.01.002
Saidaminov M. I., Maksimova N. V., Kuznetsov N. G., Sorokina N. E., Avdeev V. V. - Fire protection performance of oxidized graphite modified with boric acid, Inorg. Mater. 48 (2012) 258-262. doi.org/10.1134/S0020168512030132
Asghar H. M. A., Hussain S. N., Sattar H., Brown N. W., Roberts E. P. L. - Environmentally friendly preparation of exfoliated graphite, J. Ind. Eng. Chem. 20 (2014) 1936-1941. doi.org/10.1016/j.jiec.2013.09.014
Chung D. D. L. - Review graphite, J. Mater. Sci. 37 (2002) 1475-1489. doi.org/10.1023/ A:1014915307738
Kuan C. F., Tsai K. C., Chen C. H., Kuan H. C, Liu T. Y., Chiang C. L. - Preparation of Expandable Graphite via H2O2-Hydrothermal Process and Its Effect on Properties of High-Density Polyethylene Composites, Polym. Compos. 33 (6) (2012) 872-880. doi.org/10.1002/pc.22224
Sharma N., Vyas R., Sharma V., Rahman H., Sharma S. K., Sachdev K. - A comparative study on gas-sensing behavior of reduced graphene oxide (rGO) synthesized by chemical and environment-friendly green method, Appl Nanosci 10 (2020) 517-528. doi.org/10.1007/s13204-019-01138-7
Zu C., Li L., Qie L., Manthiram A. - Expandable-graphite-derived graphene for next-generation battery chemistries, J. Power Sources 284 (2015) 60-67. doi.org/10.1016/ j.jpowsour.2015.03.009
Camino G., Duquesne S., Delobel R., Eling B., Lindsay C., Roels T. - Mechanism of expandable graphite fire retardant action in polyurethanes, in: Fire and Polymers, American Chemical Society, Chapter 8 (2001) 90-109.
Wang G., Bai S. - Synergistic effect of expandable graphite and melamine phosphate on flame-retardant polystyrene, J. Appl. Polym. Sci., 134 (2017) 45474. doi.org/10.1002 /app.45474
Thi N. H., Nguyen T. N., Oanh H. T., Trang N. T. T., Tham D. Q., Nguyen H. T., Van Nguyen T., Hoang M.H. - Synergistic effects of aluminum hydroxide, red phosphorus, and expandable graphite on the flame retardancy and thermal stability of polyethylene, J. Appl. Polym. Sci. 138 (17) (2021) 50317. doi.org/10.1002/app.50317.
Si G., Li D., You Y., Hu X. - Investigation of the influence of red phosphorus, expansible graphite and zinc borate on flame retardancy and wear performance of glass fiber reinforced PA6 composites, Polym. Compos. 38 (10) (2015) 2090-2097. doi.org/ 10.1002/pc.23781.
Modesti M., Lorenzetti A. - Flame retardancy of polyisocyanurate–polyurethane foams: use of different charring agents, Polym. Degrad. Stab.78 (2) (2002) 341-347. doi.org/ 10.1016/S0141-3910(02)00184-2
Liu Y. L., He J. Y., Yang R. J. - Effects of dimethylmethylphosphonate, aluminum hydroxide, ammonium polyphosphate,and expandable graphite on the flame retardancy and thermalproperties of polyisocyanurate−polyurethane Foams. Ind. Eng. Chem. Res. 54 (2015) 5876-5884. doi.org/10.1021/acs.iecr.5b01019
Wang B. B., Hu S., Zhao K. M., Lu H. D., Song L., Hu Y. - Preparation of polyurethane microencapsulated expandable graphite,and its application in ethylene vinyl acetate copolymer containingsilica-gel microencapsulated ammonium polyphosphate, Ind. Eng. Chem. Res. 50 (2011) 11476-11484. doi.org/10.1021/ie200886e.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.