Fabrication of flexible multilayer transparent electrode based on silver nanowire, graphene oxide, and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16661Keywords:
Flexible transparent electrode, silver nanowire, graphene oxide, PEDOT:PSSAbstract
High-performance flexible multilayer transparent conducting electrodes (TCE) based on silver nanowires (AgNWs), graphene oxide (GO), and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) materials on the flexible polyethylene terephthalate (PET) substrate were successfully fabricated by spin-coating technique. The multilayer electrodes were fabricated using different combinations of AgNWs, GO, and PEDOT:PSS materials. The morphological, physical properties, surface roughness, and durability of the fabricated electrodes were investigated. The results indicated that the five-layer structured electrode of PEDOT:PSS/GO/AgNW/GO/PEDOT:PSS possesses the best performance with a sheet resistance of 23 Ω/sq, transmittance of 85 %, and the figure of merit (FoM) value of 8.6, which is equivalent to the commercial ITO electrode. Besides, the five-layer structured electrode possessed a surface roughness of only 8 nm. The PEDOT:PSS/GO/AgNW/GO/PEDOT:PSS electrode also exhibited high durability after being exposed to the environment for 30 days. Owing to the combination of AgNWs, GO, and PEDOT: PSS materials, the five-layer electrode of PEDOT:PSS/GO/AgNW/GO/PEDOT:PSS improved the inherent disadvantages of AgNWs electrodes. In addition, the electrode possessed good conductivity, high stability, low cost, and simplicity. The electrode can be used as a promising electrode in optoelectronic devices.
Downloads
References
Jinhong D., Songfeng P., Laipeng M., Hui M. C. - 25th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices, Adv. Mater 26 (2014) 1958-1991. https://doi.org/10.1002/adma.201304135. DOI: https://doi.org/10.1002/adma.201304135
Shengrong Y., Aaron R. R., Zuofeng C., Ian E. S., Benjamin J. W. - Metal nanowire networks: The next generation of transparent conductors, Adv. Mater 26 (2014) 6670-6687. https://doi.org/10.1002/adma.201402710. DOI: https://doi.org/10.1002/adma.201402710
Seok I. N., Seok S. K., Jang J., Dong Y. K. - Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes, Adv. Mater 20 (2008) 4061–4067. https://doi.org/10.1002/adma.200800338. DOI: https://doi.org/10.1002/adma.200800338
Churl S. L., Joung E. Y., Kwonwoo S., Park C. O., Joonho B. - Carbon nanotube-silver nanowire composite networks on flexible substrates: high reliability and application for supercapacitor electrodes, Phys. Status Solidi A 211 (2014) 2890-2897. https://doi.org/10.1002/pssa.201431538. DOI: https://doi.org/10.1002/pssa.201431538
Zongyou Y., Shuangyong S., Teddy S., Shixin W., Xiao H., Qiyuan H., Yeng M. L., Hua Z. - Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes, ACS Nano 4 (2010) 5263-5268. https://doi.org/10.1021/nn1015874. DOI: https://doi.org/10.1021/nn1015874
Youn S. K., Eun J. L., Jun T. L., Do K. H., Won K. C., Jin Y. K. - High-performance flexible transparent electrodes films based on silver nanowire-PEDOT:PSS hybrid-gels, RSC Adv 6 (2016) 64428-64433. https://doi.org/10.1039/C6RA06590B. DOI: https://doi.org/10.1039/C6RA06590B
Zhuang C. W., Zhihong. C., Xu D., Jonathan M. L., Jennifer S., Maria N., Katalin K., John R. R., David B. T., Arthur F. H., Andrew G. R. - Transparent, conductive carbon nanotube films, Science 305 (2004) 1273-1276. https://doi.org/10.1126/science.1101243. DOI: https://doi.org/10.1126/science.1101243
Chunxiong B., Jie Y., Hao G., Faming L., Yingfang Y., Bo Y., Gao F., Xiaoxin Z., Tao Y., Yiqiang Q., Jianguo L., Zhigang Z. - In situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared, ACS Nano 9 (2015) 2502-2509. https://doi.org/10.1021/nn504932e. DOI: https://doi.org/10.1021/nn504932e
Daniel L., Gael G., Celine M., Caroline C., Daniel B., Jean P. S. - Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology 24 (2013) 452001. https://doi.org/10.1088/0957-4484/24/45/452001. DOI: https://doi.org/10.1088/0957-4484/24/45/452001
Yasin A., Mahmut T., İsmail B., Ali D., Ayse B. - Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT:PSS as alternative to ITO, Surface & Coatings Technology 302 (2016) 75-81. https://doi.org/10.1016/j.surfcoat.2016.05.058. DOI: https://doi.org/10.1016/j.surfcoat.2016.05.058
Pham T. T., Le V. T., Tran V. K., Tran X. D., Chau N. T. N., Tran T. T. N., Le M. T., Nguyen N. V., Nguyen M. H. - Synthesis of Ag/GO nanocomposite with promising photocatalytic ability for reduction reaction of p-nitrophenol, Mater. Res. Express 8 (2021) 105009. https://doi.org/10.1088/2053-1591/ac2ead. DOI: https://doi.org/10.1088/2053-1591/ac2ead
Jiajie L., Lu L., Kwing T., Zhi R., Wei H., Xiaofan N., Yongsheng C., Qibing P. - Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes, ACS nano 8 (2014) 1590–1600. https://doi.org/10.1021/nn405887k. DOI: https://doi.org/10.1021/nn405887k
Jinhwan L., Phillip L., Ha B. L., Sukjoon H., Inhwa L., Junyeob Y., Seung S. L., Taek S. K., Dongjin L., Seung H. K. - Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touchpanel application, Adv. Funct. Mater 23 (2013) 4171-4176. https://doi.org/10.1002/adfm.201203802. DOI: https://doi.org/10.1002/adfm.201203802
Young U. K., Su H. P., Nguyen T. N., Mai H. H., Min J. C., Dong H. C. - Optimal Design of PEDOT:PSS Polymer-Based Silver Nanowire Electrodes for realization of Flexible Polymer Solar Cells, Macromolecular Research 29 (2021) 75-81. https://doi.org/10.1007/s13233-021-9005-8. DOI: https://doi.org/10.1007/s13233-021-9005-8
Nguyen T. N., Pham D. L., Doan T. D., Min J. C., Dong H. C., Hoang M. H. - Optimization of silver nanowire synthesis for flexible transparent conductive electrodes, Vietnam J. Chem 59 (1) (2021) 98-105. https://doi.org/10.1002/vjch.202000131.
Ayrat M. D., James M. T. - Mechanism of graphene oxide formation, ACS Nano 8(3) (2014) 3060-3068. https://doi.org/10.1021/nn500606a. DOI: https://doi.org/10.1021/nn500606a
Syang-Peng R., Yi-Huan L., Jia-Wei S., Ragu S., Uin-Ting S. -Characterization of Solvent-Treated PEDOT:PSS Thin Films with Enhanced Conductivities, Polymers 11(134) (2019) 1-10. http://doi.org/10.3390/polym11010134. DOI: https://doi.org/10.3390/polym11010134
Mohsin A., Mieke B., Wim D., Naveen R., Roos P. - Oxygen Gas and UV Barrier Properties of Nano-ZnO-Coated PET and PHBHHx Materials Fabricated by Ultrasonic Spray-Coating Technique, Nanomaterials. 11 (2021) 449. https://doi.org/10.3390/nano11020449. DOI: https://doi.org/10.3390/nano11020449
Jun W., Jinting J., Teppei A., Masaya N., Tohru S., Shijo N., Hirotaka K., Peng H., Katsuaki S. - Silver Nanowire Electrodes: Conductivity Improvement Without Post-treatment and Application in Capacitive Pressure Sensors, Nanomicro Lett. 7 (2015) 51–58. https://doi.org/10.1007/s40820-014-0018-0. DOI: https://doi.org/10.1007/s40820-014-0018-0
Hongshui W., Xueliang Q., Jianguo C., Xiaojian W., Shiyuan D. - Mechanisms of PVP in the preparation of silver nanoparticles, Mater. Chem. Phys. 94 (2005) 449-453. https://doi.org/10.1016/j.matchemphys.2005.05.005. DOI: https://doi.org/10.1016/j.matchemphys.2005.05.005
Long Z., Jiajie L., Yi H., Yanfeng M., Yan W., Yongsheng C. - Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation, Carbon N. Y. 47 (2009) 3365–3368. http://doi.org/10.1016/j.carbon.2009.07.045. DOI: https://doi.org/10.1016/j.carbon.2009.07.045
Merih Z. Ç., Pinar C. - An amperometric glucose biosensor based on PEDOT PEDOT nanofiber, RSC Adv. 8 (2018) 19724–19731. https://doi.org/10.1039/C8RA01385C. DOI: https://doi.org/10.1039/C8RA01385C
Yuan L., Nanlong H., An efficient hole transport material based on PEDOT dispersed with lignosulfonate: preparation, characterization and performance in polymer solar cells, J. Mater. Chem. A. 3 (2015) 21537–21544. https://doi.org/10.1039/C5TA05167C. DOI: https://doi.org/10.1039/C5TA05167C
Neng Y., Jielin Y., Shuang X., Yuhan K., Tao L., Hongzheng C., Mingsheng X. - Silver nanowires-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells, Nanotechnology 28 (2017) 305402. https://doi.org/10.1088/1361-6528/aa7723. DOI: https://doi.org/10.1088/1361-6528/aa7723
Hui X., Xing Y., Dexi D., Yuzhen Z., and Yuehui W. - Flexible transparent conductive film based on random networks of silver nanowires, Micromachines 9 (2018) 295. https://doi.org/10.3390/mi9060295. DOI: https://doi.org/10.3390/mi9060295
Byung Y. W., Eung S. L., Young J. O., Hyun W. K. - A silver nanowire mesh overcoated protection layer with graphene oxide as a transparent electrode for flexible organic solar cells, RSC Adv 7 (2017) 52914-52922. https://doi.org/10.1039/C7RA10889C. DOI: https://doi.org/10.1039/C7RA10889C
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.