Fabrication of flexible multilayer transparent electrode based on silver nanowire, graphene oxide, and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate

Thi Thu Hien Nguyen, Minh Hoang Nguyen, Minh Triet Khong, Thi Kim Dung Nguyen, Tien Dat Doan, Nhung Hac Thi, Ho Thi Oanh, Nguyen Duc Tuyen, Dinh Long Phan, Tuyen Van Nguyen, Mai Ha Hoang
Author affiliations

Authors

  • Thi Thu Hien Nguyen Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Minh Hoang Nguyen Viet Yen 1 High School, Viet Yen, Bac Giang, Viet Nam
  • Minh Triet Khong Viet Yen 1 High School, Viet Yen, Bac Giang, Viet Nam
  • Thi Kim Dung Nguyen Viet Yen 1 High School, Viet Yen, Bac Giang, Viet Nam
  • Tien Dat Doan Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nhung Hac Thi Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Ho Thi Oanh Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Duc Tuyen Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Dinh Long Phan College of Economics - Technology of Industry and Commerce, 569 Quang Trung, Thanh Hoa City, Thanh Hoa, Viet Nam
  • Tuyen Van Nguyen Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Mai Ha Hoang Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16661

Keywords:

Flexible transparent electrode, silver nanowire, graphene oxide, PEDOT:PSS

Abstract

High-performance flexible multilayer transparent conducting electrodes (TCE) based on silver nanowires (AgNWs), graphene oxide (GO), and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) materials on the flexible polyethylene terephthalate (PET) substrate were successfully fabricated by spin-coating technique. The multilayer electrodes were fabricated using different combinations of AgNWs, GO, and PEDOT:PSS materials. The morphological, physical properties, surface roughness, and durability of the fabricated electrodes were investigated. The results indicated that the five-layer structured electrode of PEDOT:PSS/GO/AgNW/GO/PEDOT:PSS possesses the best performance with a sheet resistance of 23 Ω/sq, transmittance of 85 %, and the figure of merit (FoM) value of 8.6, which is equivalent to the commercial ITO electrode. Besides, the five-layer structured electrode possessed a surface roughness of only 8 nm. The PEDOT:PSS/GO/AgNW/GO/PEDOT:PSS electrode also exhibited high durability after being exposed to the environment for 30 days. Owing to the combination of AgNWs, GO, and PEDOT: PSS materials, the five-layer electrode of PEDOT:PSS/GO/AgNW/GO/PEDOT:PSS improved the inherent disadvantages of AgNWs electrodes. In addition, the electrode possessed good conductivity, high stability, low cost, and simplicity. The electrode can be used as a promising electrode in optoelectronic devices.

Downloads

Download data is not yet available.

References

Jinhong D., Songfeng P., Laipeng M., Hui M. C. - 25th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices, Adv. Mater 26 (2014) 1958-1991. https://doi.org/10.1002/adma.201304135. DOI: https://doi.org/10.1002/adma.201304135 https://doi.org/10.1002/adma.201304135.">

Shengrong Y., Aaron R. R., Zuofeng C., Ian E. S., Benjamin J. W. - Metal nanowire networks: The next generation of transparent conductors, Adv. Mater 26 (2014) 6670-6687. https://doi.org/10.1002/adma.201402710. DOI: https://doi.org/10.1002/adma.201402710 https://doi.org/10.1002/adma.201402710.">

Seok I. N., Seok S. K., Jang J., Dong Y. K. - Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes, Adv. Mater 20 (2008) 4061–4067. https://doi.org/10.1002/adma.200800338. DOI: https://doi.org/10.1002/adma.200800338 https://doi.org/10.1002/adma.200800338.">

Churl S. L., Joung E. Y., Kwonwoo S., Park C. O., Joonho B. - Carbon nanotube-silver nanowire composite networks on flexible substrates: high reliability and application for supercapacitor electrodes, Phys. Status Solidi A 211 (2014) 2890-2897. https://doi.org/10.1002/pssa.201431538. DOI: https://doi.org/10.1002/pssa.201431538 https://doi.org/10.1002/pssa.201431538.">

Zongyou Y., Shuangyong S., Teddy S., Shixin W., Xiao H., Qiyuan H., Yeng M. L., Hua Z. - Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes, ACS Nano 4 (2010) 5263-5268. https://doi.org/10.1021/nn1015874. DOI: https://doi.org/10.1021/nn1015874 https://doi.org/10.1021/nn1015874.">

Youn S. K., Eun J. L., Jun T. L., Do K. H., Won K. C., Jin Y. K. - High-performance flexible transparent electrodes films based on silver nanowire-PEDOT:PSS hybrid-gels, RSC Adv 6 (2016) 64428-64433. https://doi.org/10.1039/C6RA06590B. DOI: https://doi.org/10.1039/C6RA06590B https://doi.org/10.1039/C6RA06590B.">

Zhuang C. W., Zhihong. C., Xu D., Jonathan M. L., Jennifer S., Maria N., Katalin K., John R. R., David B. T., Arthur F. H., Andrew G. R. - Transparent, conductive carbon nanotube films, Science 305 (2004) 1273-1276. https://doi.org/10.1126/science.1101243. DOI: https://doi.org/10.1126/science.1101243 https://doi.org/10.1126/science.1101243.">

Chunxiong B., Jie Y., Hao G., Faming L., Yingfang Y., Bo Y., Gao F., Xiaoxin Z., Tao Y., Yiqiang Q., Jianguo L., Zhigang Z. - In situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared, ACS Nano 9 (2015) 2502-2509. https://doi.org/10.1021/nn504932e. DOI: https://doi.org/10.1021/nn504932e https://doi.org/10.1021/nn504932e.">

Daniel L., Gael G., Celine M., Caroline C., Daniel B., Jean P. S. - Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology 24 (2013) 452001. https://doi.org/10.1088/0957-4484/24/45/452001. DOI: https://doi.org/10.1088/0957-4484/24/45/452001 https://doi.org/10.1088/0957-4484/24/45/452001.">

Yasin A., Mahmut T., İsmail B., Ali D., Ayse B. - Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT:PSS as alternative to ITO, Surface & Coatings Technology 302 (2016) 75-81. https://doi.org/10.1016/j.surfcoat.2016.05.058. DOI: https://doi.org/10.1016/j.surfcoat.2016.05.058 https://doi.org/10.1016/j.surfcoat.2016.05.058.">

Pham T. T., Le V. T., Tran V. K., Tran X. D., Chau N. T. N., Tran T. T. N., Le M. T., Nguyen N. V., Nguyen M. H. - Synthesis of Ag/GO nanocomposite with promising photocatalytic ability for reduction reaction of p-nitrophenol, Mater. Res. Express 8 (2021) 105009. https://doi.org/10.1088/2053-1591/ac2ead. DOI: https://doi.org/10.1088/2053-1591/ac2ead https://doi.org/10.1088/2053-1591/ac2ead.">

Jiajie L., Lu L., Kwing T., Zhi R., Wei H., Xiaofan N., Yongsheng C., Qibing P. - Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes, ACS nano 8 (2014) 1590–1600. https://doi.org/10.1021/nn405887k. DOI: https://doi.org/10.1021/nn405887k https://doi.org/10.1021/nn405887k.">

Jinhwan L., Phillip L., Ha B. L., Sukjoon H., Inhwa L., Junyeob Y., Seung S. L., Taek S. K., Dongjin L., Seung H. K. - Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touchpanel application, Adv. Funct. Mater 23 (2013) 4171-4176. https://doi.org/10.1002/adfm.201203802. DOI: https://doi.org/10.1002/adfm.201203802 https://doi.org/10.1002/adfm.201203802.">

Young U. K., Su H. P., Nguyen T. N., Mai H. H., Min J. C., Dong H. C. - Optimal Design of PEDOT:PSS Polymer-Based Silver Nanowire Electrodes for realization of Flexible Polymer Solar Cells, Macromolecular Research 29 (2021) 75-81. https://doi.org/10.1007/s13233-021-9005-8. DOI: https://doi.org/10.1007/s13233-021-9005-8 https://doi.org/10.1007/s13233-021-9005-8.">

Nguyen T. N., Pham D. L., Doan T. D., Min J. C., Dong H. C., Hoang M. H. - Optimization of silver nanowire synthesis for flexible transparent conductive electrodes, Vietnam J. Chem 59 (1) (2021) 98-105. https://doi.org/10.1002/vjch.202000131. https://doi.org/10.1002/vjch.202000131.">

Ayrat M. D., James M. T. - Mechanism of graphene oxide formation, ACS Nano 8(3) (2014) 3060-3068. https://doi.org/10.1021/nn500606a. DOI: https://doi.org/10.1021/nn500606a https://doi.org/10.1021/nn500606a.">

Syang-Peng R., Yi-Huan L., Jia-Wei S., Ragu S., Uin-Ting S. -Characterization of Solvent-Treated PEDOT:PSS Thin Films with Enhanced Conductivities, Polymers 11(134) (2019) 1-10. http://doi.org/10.3390/polym11010134. DOI: https://doi.org/10.3390/polym11010134 http://doi.org/10.3390/polym11010134.">

Mohsin A., Mieke B., Wim D., Naveen R., Roos P. - Oxygen Gas and UV Barrier Properties of Nano-ZnO-Coated PET and PHBHHx Materials Fabricated by Ultrasonic Spray-Coating Technique, Nanomaterials. 11 (2021) 449. https://doi.org/10.3390/nano11020449. DOI: https://doi.org/10.3390/nano11020449 https://doi.org/10.3390/nano11020449.">

Jun W., Jinting J., Teppei A., Masaya N., Tohru S., Shijo N., Hirotaka K., Peng H., Katsuaki S. - Silver Nanowire Electrodes: Conductivity Improvement Without Post-treatment and Application in Capacitive Pressure Sensors, Nanomicro Lett. 7 (2015) 51–58. https://doi.org/10.1007/s40820-014-0018-0. DOI: https://doi.org/10.1007/s40820-014-0018-0 https://doi.org/10.1007/s40820-014-0018-0.">

Hongshui W., Xueliang Q., Jianguo C., Xiaojian W., Shiyuan D. - Mechanisms of PVP in the preparation of silver nanoparticles, Mater. Chem. Phys. 94 (2005) 449-453. https://doi.org/10.1016/j.matchemphys.2005.05.005. DOI: https://doi.org/10.1016/j.matchemphys.2005.05.005 https://doi.org/10.1016/j.matchemphys.2005.05.005.">

Long Z., Jiajie L., Yi H., Yanfeng M., Yan W., Yongsheng C. - Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation, Carbon N. Y. 47 (2009) 3365–3368. http://doi.org/10.1016/j.carbon.2009.07.045. DOI: https://doi.org/10.1016/j.carbon.2009.07.045 http://doi.org/10.1016/j.carbon.2009.07.045.">

Merih Z. Ç., Pinar C. - An amperometric glucose biosensor based on PEDOT PEDOT nanofiber, RSC Adv. 8 (2018) 19724–19731. https://doi.org/10.1039/C8RA01385C. DOI: https://doi.org/10.1039/C8RA01385C https://doi.org/10.1039/C8RA01385C.">

Yuan L., Nanlong H., An efficient hole transport material based on PEDOT dispersed with lignosulfonate: preparation, characterization and performance in polymer solar cells, J. Mater. Chem. A. 3 (2015) 21537–21544. https://doi.org/10.1039/C5TA05167C. DOI: https://doi.org/10.1039/C5TA05167C https://doi.org/10.1039/C5TA05167C.">

Neng Y., Jielin Y., Shuang X., Yuhan K., Tao L., Hongzheng C., Mingsheng X. - Silver nanowires-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells, Nanotechnology 28 (2017) 305402. https://doi.org/10.1088/1361-6528/aa7723. DOI: https://doi.org/10.1088/1361-6528/aa7723 https://doi.org/10.1088/1361-6528/aa7723.">

Hui X., Xing Y., Dexi D., Yuzhen Z., and Yuehui W. - Flexible transparent conductive film based on random networks of silver nanowires, Micromachines 9 (2018) 295. https://doi.org/10.3390/mi9060295. DOI: https://doi.org/10.3390/mi9060295 https://doi.org/10.3390/mi9060295.">

Byung Y. W., Eung S. L., Young J. O., Hyun W. K. - A silver nanowire mesh overcoated protection layer with graphene oxide as a transparent electrode for flexible organic solar cells, RSC Adv 7 (2017) 52914-52922. https://doi.org/10.1039/C7RA10889C. DOI: https://doi.org/10.1039/C7RA10889C https://doi.org/10.1039/C7RA10889C.">

Downloads

Published

30-12-2022

How to Cite

[1]
T. T. H. Nguyen, “Fabrication of flexible multilayer transparent electrode based on silver nanowire, graphene oxide, and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate ”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 1067–1077, Dec. 2022.

Issue

Section

Materials