Heterotrophic nitrifying bacteria from activated sludge in DHS reactor for ammonium removal of natural rubber processing wastewater treatment

Tran Minh Duc, Phan Thi Thanh Thuy, Nguyen Thi Huyen, Nguyen Lan Huong
Author affiliations

Authors

  • Tran Minh Duc School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
  • Phan Thi Thanh Thuy School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
  • Nguyen Thi Huyen School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
  • Nguyen Lan Huong School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17141

Keywords:

heterotrophic nitrifying bacterium, downflow hanging sponge, ammonium removal, natural rubber processing wastewater

Abstract

Two heterotrophic nitrifying bacterial strains, D2 and D7 were isolated from an activated sludge of sponges in a laboratory-scale downflow hanging sponge reactor. Both strains exhibited efficient ammonium removal ability over a wide range of ammonium loads. At the initial concentration of 100 mg/L, NH4+-N was completely degraded within 20 h by both strains. When the initial concentration was increased to 200 mg/L, the NH4+-N removal efficiency was 99.6 % within 20 h by the strain D2 and 61.3 % by the strain D7. In natural rubber processing wastewater, the ammonium removal efficiencies of strain D2 and D7 were 38 % and 99 % with the initial N-NH4+ concentration of 280 and 380 mg/L after 88 h, respectively. The 16S rRNA gene sequence of D2 and D7 showed the highest similarity to the Pseudomonas aeruginosa and Glutamicibacter nicotianae, respectively. This is the first report to demonstrate the ability to remove ammonium in NRPW by ​heterotrophic nitrifying bacteria isolated from activated sludge in DHS reactor.

Downloads

Download data is not yet available.

References

Tanikawa D., Syutsubo K., Hatamoto M., Fukuda M., Takahashi M., Choeisai P. K., Yamaguchi, T. - Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system. Water Sci. Technol. 73 (2016) 1777-1784. doi.org/10.2166/wst.2016.019. DOI: https://doi.org/10.2166/wst.2016.019

Tanikawa D., Kataoka T., Hirakata Y., Hatamoto M., Yamaguchi, T. - Pre-treatment and post-treatment systems for enhancing natural rubber industrial wastewater treatment. Process Saf. Environ. Prot. 138 (2020) 256–262. doi.org/10.1016/j.psep.2020.03.030. DOI: https://doi.org/10.1016/j.psep.2020.03.030

Tran P.T., Watari T., Hirakata Y., Nguyen T.T., Hatamoto M., Tanikawa D., Syutsubo K., Nguyen M.T., Fukuda M., Nguyen L.H., Yamaguchi, T. - Anaerobic baffled reactor in treatment of natural rubber processing wastewater: reactor performance and analysis of microbial community. J. Water Environ. Technol. 15 (2017) 241-251. doi.org/10.2965/jwet.17-038. DOI: https://doi.org/10.2965/jwet.17-038

Watari T., Mai T. C., Tanikawa D., Hirakata Y., Hatamoto M., Syutsubo K., Fukuda M., Nguyen N. B., Yamaguchi T. - Development of downflow hanging sponge (DHS) reactor as post treatment of existing combined anaerobic tank treating natural rubber processing wastewater. Water Sci. Technol. 75 (2017) 57-68. doi.org/10.2166/wst.2016.487. DOI: https://doi.org/10.2166/wst.2016.487

Watari T., Nguyen T.T., Natsumi T., Tanikawa D., Kuroda K., Nguyen L.H., Nguyen M.T., Huynh T.T., Hatamoto M., Syutsubo K., Fukuda M., Yamaguchi T. - Development of a BR-UASB-DHS system for natural rubber processing wastewater treatment. Environ. Technol. 37 (2016) 459-465. doi.org/10.1080/09593330.2015.1117042. DOI: https://doi.org/10.1080/09593330.2015.1117042

Tanikawa D., Kataoka T., Sonaka H., Hirakata Y., Hatamoto M., Yamaguchi T. - Evaluation of key factors for residual rubber coagulation in natural rubber processing wastewater, J. Water Process. Eng. 33 (2020) 101041. doi.org/10.1016/j.jwpe.2019.101041. DOI: https://doi.org/10.1016/j.jwpe.2019.101041

Yang M., Lu D., Yang J., Zhao Y., Zhao Q., Sun Y., Liu H., Ma, J. - Carbon and nitrogen metabolic pathways and interaction of cold-resistant heterotrophic nitrifying bacteria under aerobic and anaerobic conditions. Chemosphere 234 (2019) 162-170. doi.org/10.1016/j.chemosphere.2019.06.052. DOI: https://doi.org/10.1016/j.chemosphere.2019.06.052

Zhang Q.L., Liu Y., Ai G.M., Miao L.L., Zheng H.Y., Liu, Z.P. - The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 108 (2012) 35-44. doi.org/10.1016/j.biortech.2011.12.139. DOI: https://doi.org/10.1016/j.biortech.2011.12.139

Zhang J., Wu P., Hao B., and Yu Z. - Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 102 (2011) 9866-9869. doi.org/10.1016/j.biortech.2011.07.118. DOI: https://doi.org/10.1016/j.biortech.2011.07.118

Sun Y., Li A., Zhang X., Ma F. - Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13. Appl. Microbiol. Biotechnol., 99 (2015) 3243-3248. doi.org/10.1007/s00253-014-6221-6. DOI: https://doi.org/10.1007/s00253-014-6221-6

Yu Y., An Q., Zhou Y., Deng S., Miao Y., Zhao B., Yang L. - Highly synergistic effects on ammonium removal by the co-system of Pseudomonas stutzeri XL-2 and modified walnut shell biochar. Bioresour. Technol. 280 (2019) 239-246. doi.org/10.1016/j.biortech.2019.02.037. DOI: https://doi.org/10.1016/j.biortech.2019.02.037

Gao J., Zhu T., Liu C., Zhang J., Gao J., Zhang J., Cai M.,

Li Y. - Ammonium removal characteristics of heterotrophic nitrifying bacterium Pseudomonas stutzeri GEP 01 with potential for treatment of ammonium rich wastewater. Bioprocess. Biosyst. Eng. 43 (2020) 959-969. doi.org/10.1007/s00449-020-02292-x. DOI: https://doi.org/10.1007/s00449-020-02292-x

Motamedi H., Jafari M. - Screening heterotrophic ammonia removal and aerobic denitrifying bacteria from wastewater of ammonia production units of a petrochemical industry. Curr. Microbiol. 77 (2020) 2207-2214. doi.org/10.1007/s00284-020-02065-5. DOI: https://doi.org/10.1007/s00284-020-02065-5

Yang L., Ren Y. X., Zhao S. Q., Liang X., Wang J. - Isolation and characterization of three heterotrophic nitrifying-aerobic denitrifying bacteria from a sequencing batch reactor. Ann. Microbiol. 66 (2016) 737-747. doi.org/10.1007/s13213-015-1161-7. DOI: https://doi.org/10.1007/s13213-015-1161-7

Zhao B., Tian M., An Q., Ye J., Guo J. S., - Characteristics of a heterotrophic nitrogen removal bacterium and its potential application on treatment of ammonium-rich wastewater. Bioresour. Technol. 226 (2017) 46-54. doi.org/10.1016/j.biortech.2016.11.120. DOI: https://doi.org/10.1016/j.biortech.2016.11.120

Cai X., Li K., He T., Wang Y., Zhang X., Xie E., Ding N.,

and Li Z. - Characteristics of Heterotrophic Nitrifying and Aerobic Denitrifying Arthrobacter nicotianae D51 Strain in the Presence of Copper. Water 11 (2019) 434. doi.org/10.3390/w11030434. DOI: https://doi.org/10.3390/w11030434

Zhang N., Zhang Y., Bohu T., Wu S., Bai Z., Zhuang.X. - Nitrogen removal characteristics and constraints of an Alphaproteobacteria with potential for high nitrogen content heterotrophic nitrification-aerobic denitrification. Microorganisms 10 (2022) 235. doi.org/10.3390/microorganisms10020235 DOI: https://doi.org/10.3390/microorganisms10020235

Nguyen L.H., Itoh K., Suyama K. - Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacteria in Vietnamese soils. Microbes Environ. 22 (2007) 243-256. doi.org/10.1264/jsme2.22.243 DOI: https://doi.org/10.1264/jsme2.22.243

Lane D.J. - 16S/23S rRNA sequencing. In: Stackebrandt E., Goodfellow M. - Nucleic acid techniques in bacterial systematics, John Wiley & Sons, New York (1991), 115-175.

Tamura K., Stecher G., and Kumar S. - MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 38 (2021) 3022-3027. doi.org/10.1093/molbev/msab120. DOI: https://doi.org/10.1093/molbev/msab120

Zhang, Q. - Research on key issues in determination of ammomia nitrogen in water and waswater by Nessler's reagent spectrophotometry. Environ. Eng. 27 (2009) 85-88.

Hach Company, - Nitrite Method 8153. Water Anal. Handb. 3 (2014) 4-11.

Huang X., Ni J., Yang C., Mi Feng M., Zhenlun Li Z., Xie D. - Efficient ammonium removal by bacteria Rhodopseudomonas isolated from natural landscape water: China case study. Water 10 (2018) 1107. doi.org/10.3390/w10081107. DOI: https://doi.org/10.3390/w10081107

Downloads

Published

20-10-2023

How to Cite

[1]
T. Minh Duc, P. Thi Thanh Thuy, N. Thi Huyen, and N. L. Huong, “Heterotrophic nitrifying bacteria from activated sludge in DHS reactor for ammonium removal of natural rubber processing wastewater treatment”, Vietnam J. Sci. Technol., vol. 61, no. 5, pp. 865–874, Oct. 2023.

Issue

Section

Environment

Most read articles by the same author(s)