Nature-derived Ultrahigh-performance Aromatic Bioplastics

Aniruddha Nag, Tatsuo Kaneko
Author affiliations

Authors

  • Aniruddha Nag Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
  • Tatsuo Kaneko Division of Materials Science, Graduate School of Science and Technology, NaraInstitute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan

DOI:

https://doi.org/10.15625/2525-2518/17116

Keywords:

bioplastics, 3-amino-4-hydroxybenzoic acid, polybenzoxazole, polybenzimidazole

Abstract

Biomass, a renewable carbon source which can be processed using biorefinery system as an alternative of the conventional petroleum-based refineries. Aromatic precursor molecule synthesis involves chemical synthesis of fossil-fuel-based starting materials, such as benzene and xylene. These energy-intensive processes are usually producing many byproducts along with the desired molecule. If aromatic molecules can be extracted from natural resources involving minimum chemical conversions, that can be advantageous. Most of the reported approaches are expensive in nature and the outcomes with lower yield. Microbial fermentation of the lignocellulosic derivatives are ideal to establish sustainable society. In this chapter, we will focus on the aromatic building block preparations starting from nonedible feedstock such as kraft pulp. Aromatic aminobenzoic acid (3-amino-4-hydroxybenzoic acid) preparation from renewable resources and its use in various polymer preparations, such as polyaniline, polyester, and polybenzazole will be discussed here.

Downloads

Download data is not yet available.

References

Luo H., Abu-Omar M. M. - Chemicals From Lignin, In Encyclopedia of Sustainable Technologies, Abraham, M. A., Ed.; Elsevier: Oxford, 2017, pp. 573-585. https://doi.org/ 10.1016/B978-0-12-409548-9.10235-0. DOI: https://doi.org/10.1016/B978-0-12-409548-9.10235-0

High-Value Opportunities for Lignin - Unlocking Its Potential, Renewable Carbon News.Frost & Sullivan, 2012-11-07.

Helanto K., Matikainen L., Talja R., Rojas O. J. - Bio-Based Polymers for Sustainable Packaging and Biobarriers: A Critical Review, BioResources 14 (2) (2019) 4902-4951.

Iwata T. - Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angewandte Chemie International Edition 54 (11) (2015) 3210-3215. https://doi.org/10.1002/anie.201410770. DOI: https://doi.org/10.1002/anie.201410770

Brodin M., Vallejos M., Opedal M. T., Area M. C. - Chinga-Carrasco, G. Lignocellulosics as Sustainable Resources for Production of Bioplastics - A Review, Journal of Cleaner Production 162 (2017) 646-664. https://doi.org/10.1016/j.jclepro.2017.05.209. DOI: https://doi.org/10.1016/j.jclepro.2017.05.209

Yu J., Paterson N., Blamey J., Millan M. - Cellulose, Xylan and Lignin Interactions during Pyrolysis of Lignocellulosic Biomass, Fuel 191 (2017) 140-149. https://doi.org/ 10.1016/j.fuel.2016.11.057. DOI: https://doi.org/10.1016/j.fuel.2016.11.057

Yang J., Ching Y. C., Chuah C. H. - Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review, Polymers 11 (5) (2019) 751. https://doi.org/10.3390/polym 11050751. DOI: https://doi.org/10.3390/polym11050751

Spiridon I., Leluk K., Resmerita A. M., Darie R. N. - Evaluation of PLA–Lignin Bioplastics Properties before and after Accelerated Weathering, Composites Part B: Engineering 69 (2015) 342-349. https://doi.org/10.1016/j.compositesb.2014.10.006. DOI: https://doi.org/10.1016/j.compositesb.2014.10.006

Kawamoto H. - Lignin Pyrolysis Reactions, Journal of Wood Science 63 (2) (2017) 117-132. https://doi.org/10.1007/s10086-016-1606-z. DOI: https://doi.org/10.1007/s10086-016-1606-z

Saiz-Jimenez C., De Leeuw J. W. - Lignin Pyrolysis Products: Their Structures and Their Significance as Biomarkers, Organic Geochemistry 10 (4) (1986) 869-876. https://doi.org/ 10.1016/S0146-6380(86)80024-9. DOI: https://doi.org/10.1016/S0146-6380(86)80024-9

Nag A., Matsumi N., Kaneko T. - Bio-Based Aromatics: Aminobenzoic Acid Derivatives for High-Performance Bioplastics, In Sustainability & Green Polymer Chemistry Volume 2: Biocatalysis and Biobased Polymers, ACS Symposium Series, American Chemical Society 1373 (2020) 99-121. https://doi.org/10.1021/bk-2020-1373.ch006. DOI: https://doi.org/10.1021/bk-2020-1373.ch006

Dwivedi S., Kaneko T. - Aromatic Bioplastics with Heterocycles, In Green Polymer Chemistry: New Products, Processes, and Applications; ACS Symposium Series, American Chemical Society 1310 (2018) 201-218. https://doi.org/10.1021/bk-2018-1310.ch014. DOI: https://doi.org/10.1021/bk-2018-1310.ch014

Nag A., Ali M. A., Kawaguchi H., Saito S., Kawasaki Y., Miyazaki S., Kawamoto H., Adi D. T. N., Yoshihara K., Masuo S., Katsuyama Y., Kondo A., Ogino C., Takaya N., Kaneko T., Ohnishi Y. - Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock, Advanced Sustainable Systems 5 (1) (2021) 2000193. https://doi.org/10.1002/adsu.202000193. DOI: https://doi.org/10.1002/adsu.202000193

Nag A., Ali M. A., Watanabe M., Singh M., Amornwachirabodee K., Kato S., Mitsumata T., Takada K., Kaneko T. - High-Performance Poly(Benzoxazole/Benzimidazole) Bio-Based Plastics with Ultra-Low Dielectric Constant from 3-Amino-4-Hydroxybenzoic Acid, Polymer Degradation and Stability 162 (2019) 29-35. https://doi.org/10.1016/ j.polymdegradstab.2019.01.036. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.01.036

Renewably Sourced Automotive Materials. https://www.dupont.com/knowledge/ renewably-sourced-interiors.html (accessed 2020-06-10).

Holladay J. E., White J. F., Bozell J. J., Johnson D. - Top Value Added Chemicals from Biomass - Volume II, Results of Screening for Potential Candidates from Biorefinery Lignin, PNNL-16983, Pacific Northwest National Lab. (PNNL), Richland, WA (United States), National Renewable Energy Lab. (NREL), Golden, CO (United States), 2007. DOI: https://doi.org/10.2172/921839

Bozell J. J., Petersen G. R. - Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—the US Department of Energy’s “Top 10” Revisited. Green Chemistry 12 (4) (2010), 539–554. https://doi.org/10.1039/B922014C. DOI: https://doi.org/10.1039/b922014c

Marshall A. L., Alaimo P. J. - Useful Products from Complex Starting Materials: Common Chemicals from Biomass Feedstocks, Chemistry – A European Journal 16 (17) (2010) 4970-4980. https://doi.org/10.1002/chem.200903028. DOI: https://doi.org/10.1002/chem.200903028

Gandini A., Belgacem M. N. - Chapter 1 - The State of the Art. In Monomers, Polymers and Composites from Renewable Resources, Belgacem, M. N., Gandini, A., Eds., Elsevier: Amsterdam, 2008, pp 1-16. https://doi.org/10.1016/B978-0-08-045316-3.000016. DOI: https://doi.org/10.1016/B978-0-08-045316-3.00001-6

Gandini A. - The Irruption of Polymers from Renewable Resources on the Scene of Macromolecular Science and Technology, Green Chemistry 13 (5) (2011) 1061-1083. https://doi.org/10.1039/C0GC00789G. DOI: https://doi.org/10.1039/c0gc00789g

Gandini A. - Furans as Offspring of Sugars and Polysaccharides and Progenitors of a Family of Remarkable Polymers: A Review of Recent Progress, Polymer Chemistry 1 (3) (2010) 245-251. https://doi.org/10.1039/B9PY00233B. DOI: https://doi.org/10.1039/B9PY00233B

Gandini A., Silvestre A. J. D., Neto C. P., Sousa A. F., Gomes M. - The Furan Counterpart of Poly(Ethylene Terephthalate): An Alternative Material Based on Renewable Resources, Journal of Polymer Science Part A: Polymer Chemistry 47 (1) (2009) 295-298. https://doi.org/10.1002/pola.23130. DOI: https://doi.org/10.1002/pola.23130

Mialon L., Vanderhenst R., Pemba A. G., Miller S. A. - Polyalkylenehydroxybenzoates (PAHBs): Biorenewable Aromatic/Aliphatic Polyesters from Lignin, Macromolecular Rapid Communications 32 (17) (2011) 1386-1392. https://doi.org/10.1002/ marc.201100242. DOI: https://doi.org/10.1002/marc.201100242

Kumar N., Pruthi V. - Potential Applications of Ferulic Acid from Natural Sources, Biotechnol Rep (Amst) 4 (2014) 86-93. https://doi.org/10.1016/j.btre.2014.09.002. DOI: https://doi.org/10.1016/j.btre.2014.09.002

Hatakeyama H., Hatakeyama T. - Lignin Structure, Properties, and Applications, In: Biopolymers: Lignin, Proteins, Bioactive Nanocomposites, Abe A., Dusek K., Kobayashi, S. (Eds.), Advances in Polymer Science, Springer: Berlin, Heidelberg, 2010, pp. 1-63. https://doi.org/10.1007/12_2009_12. DOI: https://doi.org/10.1007/12_2009_12

Mialon L., G. Pemba A., Miller S. - Biorenewable Polyethylene Terephthalate Mimics Derived from Lignin and Acetic Acid, Green Chemistry 12 (10) (2010) 1704-1706. https://doi.org/10.1039/C0GC00150C. DOI: https://doi.org/10.1039/c0gc00150c

Kaneko T., Thi T. H., Shi D. J., Akashi M. - Environmentally Degradable, High-Performance Thermoplastics from Phenolic Phytomonomers, Nature Materials 5 (12) (2006) 966-970. https://doi.org/10.1038/nmat1778. DOI: https://doi.org/10.1038/nmat1778

Takeshima H., Satoh K., Kamigaito M. - Bio-Based Functional Styrene Monomers Derived from Naturally Occurring Ferulic Acid for Poly(Vinylcatechol) and Poly(Vinylguaiacol) via Controlled Radical Polymerization. Macromolecules 50 (11) (2017) 4206-4216. https://doi.org/10.1021/acs.macromol.7b00970. DOI: https://doi.org/10.1021/acs.macromol.7b00970

Miyaji H., Satoh K., Kamigaito M. - Bio-Based Polyketones by Selective Ring-Opening Radical Polymerization of α-Pinene-Derived Pinocarvone, Angewandte Chemie International Edition 55 (4) (2016) 1372-1376. https://doi.org/10.1002/anie.201509379. DOI: https://doi.org/10.1002/anie.201509379

Tabata Y., Abe H. - Synthesis and Properties of Alternating Copolymers of 3-Hydroxybutyrate and Lactate Units with Different Stereocompositions, Macromolecules 47 (21) (2014) 7354-7361. https://doi.org/10.1021/ma501783f. DOI: https://doi.org/10.1021/ma501783f

Fujita T., Nguyen H. D., Ito T., Zhou S., Osada L., Tateyama S., Kaneko T., Takaya N. - Microbial Monomers Custom-Synthesized to Build True Bio-Derived Aromatic Polymers, Appl. Microbiol Biotechnol 97 (20) (2013) 8887-8894. https://doi.org/10.1007/s00253-013-5078-4. DOI: https://doi.org/10.1007/s00253-013-5078-4

Mu W., Liu F., Jia J., Chen C., Zhang T., Jiang B. - 3-Phenyllactic Acid Production by Substrate Feeding and PH-Control in Fed-Batch Fermentation of Lactobacillus Sp. SK007. Bioresource Technology 100 (21) (2009) 5226-5229. https://doi.org/10.1016/j.biortech. 2009.05.024. DOI: https://doi.org/10.1016/j.biortech.2009.05.024

Niggeweg R., Michael A. J., Martin C. - Engineering Plants with Increased Levels of the Antioxidant Chlorogenic Acid. Nature Biotechnology 22 (6) (2004) 746-754. https://doi. org/10.1038/nbt966. DOI: https://doi.org/10.1038/nbt966

Kyndt J. A., Hurley J. K., Devreese B., Meyer T. E., Cusanovich M. A., Tollin G., Van Beeumen J. J. and Rhodobacter Capsulatus Photoactive Yellow Protein: Genetic Context, Spectral and Kinetics Characterization, and Mutagenesis, Biochemistry 43 (7) (2004) 1809-1820. https://doi.org/10.1021/bi035789f. DOI: https://doi.org/10.1021/bi035789f

Kort R., Phillips-Jones M. K., van Aalten D. M. F., Haker A., Hoffer S. M., Hellingwerf K. J., Crielaard W. - Sequence, Chromophore Extraction and 3-D Model of the Photoactive Yellow Protein from Rhodobacter Sphaeroides1The Nucleotide Sequences Reported in This Paper Have Been Submitted to the EMBL Nucleotide Sequence Database under Accession Numbers AJ002398 and X98889.1. Biochim, Biophys. Acta BBA - Protein Struct. Mol. Enzymol. 1385 (1998) 1-6. https://doi.org/10.1016/S0167-4838(98)00050-8. DOI: https://doi.org/10.1016/S0167-4838(98)00050-8

Weng W., Markel E. J., Dekmezian A. H. - Synthesis of Long-Chain Branched Propylene Polymers via Macromonomer Incorporation, Macromolecular Rapid Communications 22 (18) (2001) 1488-1492. https://doi.org/10.1002/1521-3927(20011201)22:18<1488::AID-MARC1488>3.0.CO,2-I. DOI: https://doi.org/10.1002/1521-3927(20011201)22:18<1488::AID-MARC1488>3.0.CO;2-I

Johnson O. H., Green D. E., Pauli R. - The antibacterial action of derivatives and analogues of p-aminobenzoic acid, Journal of Biological Chemistry 153 (1) (1944) 37-47. DOI: https://doi.org/10.1016/S0021-9258(18)51210-2

Kaneko T., Tateyam S., Okajima M., Hojoon S., Takaya N. - Ultrahigh Heat-Resistant, Transparent Bioplastics from Exotic Amino Acid, Materials Today: Proceedings 3 (2016) S21-S29. https://doi.org/10.1016/j.matpr.2016.01.004. DOI: https://doi.org/10.1016/j.matpr.2016.01.004

Matsushita Y., Nakamura A., Aoki D., Yagami S., Fukushima K. - Bio-Based Polymer from Ferulic Acid by Electropolymerization, BioResources 11 (4) (2016) 9789-9802. DOI: https://doi.org/10.15376/biores.11.4.9789-9802

Tateyama S., Masuo S., Suvannasara P., Oka Y., Miyazato A., Yasaki K., Teerawatananond T., Muangsin N., Zhou S., Kawasaki Y., Zhu L., Zhou Z., Takaya N., Kaneko T. - Ultrastrong, Transparent Polytruxillamides Derived from Microbial Photodimers, Macromolecules 49 (9) (2016) 3336-3342. https://doi.org/10.1021/acs. macromol.6b00220. DOI: https://doi.org/10.1021/acs.macromol.6b00220

Kawasaki Y., Aniruddha N., Minakawa H., Masuo S., Kaneko T., Takaya N. - Novel Polycondensed Biopolyamide Generated from Biomass-Derived 4-Aminohydrocinnamic Acid, Applied Microbiology and Biotechnology 102 (2) (2018) 631-639. https://doi.org/ 10.1007/s00253-017-8617-6. DOI: https://doi.org/10.1007/s00253-017-8617-6

Tachibana Y., Masuda T., Funabashi M., Kunioka M. - Chemical Synthesis of Fully Biomass-Based Poly(Butylene Succinate) from Inedible-Biomass-Based Furfural and Evaluation of Its Biomass Carbon Ratio, Biomacromolecules 11(10) (2010) 2760-2765. https://doi.org/10.1021/bm100820y. DOI: https://doi.org/10.1021/bm100820y

Wang C., Ming W., Yan D., Zhang C., Yang M., Liu Y., Zhang Y., Guo B., Wan Y., Xing J. - Novel Membrane-Based Biotechnological Alternative Process for Succinic Acid Production and Chemical Synthesis of Bio-Based Poly (Butylene Succinate), Bioresource Technology 156 (2014) 6-13. https://doi.org/10.1016/j.biortech.2013.12.043. DOI: https://doi.org/10.1016/j.biortech.2013.12.043

Vardon D. R., Rorrer N. A., Salvachúa D., Settle A. E., Johnson C. W., Menart M. J., Cleveland N. S., Ciesielski P. N., Steirer K. X., Dorgan J. R., Beckham G. T. - Cis,Cis-Muconic Acid: Separation and Catalysis to Bio-Adipic Acid for Nylon-6,6 Polymerization, Green Chemistry 18 (11) (2016) 3397-3413. https://doi.org/10.1039/C5GC02844B. DOI: https://doi.org/10.1039/C5GC02844B

Han J. - A Bio-Based ‘Green’ Process for Catalytic Adipic Acid Production from Lignocellulosic Biomass Using Cellulose and Hemicellulose Derived γ-Valerolactone. Energy Conversion and Management 129 (2016) 75-80. https://doi.org/10.1016/ j.enconman.2016.10.019. DOI: https://doi.org/10.1016/j.enconman.2016.10.019

Suzuki H., Ohnishi Y., Furusho Y., Sakuda S., Horinouchi S. - Novel Benzene Ring Biosynthesis from C(3) and C(4) Primary Metabolites by Two Enzymes. Journal of Biological Chemistry 281 (48) (2006) 36944-36951. https://doi.org/10.1074/jbc. M608103200. DOI: https://doi.org/10.1074/jbc.M608103200

Suzuki H., Ohnishi Y., Horinouchi S. - GriC and GriD Constitute a Carboxylic Acid Reductase Involved in Grixazone Biosynthesis in Streptomyces Griseus, The Journal of Antibiotics 60 (6) (2007) 380-387. https://doi.org/10.1038/ja.2007.52. DOI: https://doi.org/10.1038/ja.2007.52

Shozui F., Tajima Y. - Escherichia Coli Capable of Producing 3-Amino-4-Hydroxybenzoic Acid, US9587259B2, March 7, 2017.

Kawaguchi H., Ogino C., Kondo A. - Microbial Conversion of Biomass into Bio-Based Polymers, Bioresource Technology 245 (2017) 1664-1673. https://doi.org/10.1016/ j.biortech.2017.06.135. DOI: https://doi.org/10.1016/j.biortech.2017.06.135

Liu R., Liang L., Li F., Wu M., Chen K., Ma J., Jiang M., Wei P., Ouyang P. - Efficient Succinic Acid Production from Lignocellulosic Biomass by Simultaneous Utilization of Glucose and Xylose in Engineered Escherichia Coli, Bioresource Technology 149 (2013) 84-91. https://doi.org/10.1016/j.biortech.2013.09.052. DOI: https://doi.org/10.1016/j.biortech.2013.09.052

Kawaguchi H., Hasunuma T., Ogino C., Kondo A. - Bioprocessing of Bio-Based Chemicals Produced from Lignocellulosic Feedstocks, Current Opinion in Biotechnology 42 (2016) 30-39. https://doi.org/10.1016/j.copbio.2016.02.031. DOI: https://doi.org/10.1016/j.copbio.2016.02.031

Anand J., Palaniappan S., Sathyanarayana D. N. - Conducting Polyaniline Blends and Composites, Progress in Polymer Science 23 (6) (1998) 993-1018. https://doi.org/ 10.1016/S0079-6700(97)00040-3. DOI: https://doi.org/10.1016/S0079-6700(97)00040-3

Kulkarni V. G. - Polyanilines: Progress in Processing and Applications. In Semiconducting Polymers, ACS Symposium Series, American Chemical Society 735 (1999) 174-183. https://doi.org/10.1021/bk-1999-0735.ch012. DOI: https://doi.org/10.1021/bk-1999-0735.ch012

Armes S. P., Miller J. F. - Optimum Reaction Conditions for the Polymerization of Aniline in Aqueous Solution by Ammonium Persulphate, Synthetic Metals 22 (4) (1988) 385-393. https://doi.org/10.1016/0379-6779(88)90109-9. DOI: https://doi.org/10.1016/0379-6779(88)90109-9

Kan K., Yamamoto H., Kaneko D., Tateyama S., Kaneko T. - Novel π-Conjugated Bio-Based Polymer, Poly(3-Amino-4-Hydroxybenzoic Acid), and Its Solvatochromism, Pure and Applied Chemistry 86 (5) (2014) 685-690. https://doi.org/10.1515/pac-2013-1115. DOI: https://doi.org/10.1515/pac-2013-1115

Park G. T., Chang J.-H., Lim A. R. - Thermotropic Liquid Crystalline Polymers with Various Alkoxy Side Groups: Thermal Properties and Molecular Dynamics, Polymers 11 (6) (2019) 992. https://doi.org/10.3390/polym11060992. DOI: https://doi.org/10.3390/polym11060992

Jackson W. J., Kuhfuss H. F. - Liquid Crystal Polymers. I. Preparation and Properties of p-Hydroxybenzoic Acid Copolyesters, Journal of Polymer Science: Polymer Chemistry Edition 14 (8) (1976) 2043-2058. https://doi.org/10.1002/pol.1976.170140820. DOI: https://doi.org/10.1002/pol.1976.170140820

Ophir Z., Ide Y. - Injection Molding of Thermotropic Liquid Crystal Polymers, Polymer Engineering & Science 23 (14) (1983) 792-796. https://doi.org/10.1002/pen.760231409. DOI: https://doi.org/10.1002/pen.760231409

Uzman M., Kühnpast K., Springer J. - Orientational Behaviour of Polymer Blends Containing a Liquid-Crystalline Component, Die Makromolekulare Chemie 190 (12) (1989) 3185-3194. https://doi.org/10.1002/macp.1989.021901216. DOI: https://doi.org/10.1002/macp.1989.021901216

Lenz R. W. - Synthesis and Properties of Thermotropic Liquid Crystal Polymers with Main Chain Mesogenic Units, Polymer Journal 17 (1) (1985) 105-115. https://doi.org/ 10.1295/polymj.17.105. DOI: https://doi.org/10.1295/polymj.17.105

Zeng L., Li R., Chen P., Xu J., Liu P. - Synthesis and Characterization of Thermotropic Liquid Crystalline Polyarylate with Ether Ether Ketone Segments in the Main Chain, Journal of Applied Polymer Science 133 (32) (2016). https://doi.org/10.1002/app.43800. DOI: https://doi.org/10.1002/app.43800

Martínez-Gómez A., Encinar M., Fernández-Blázquez J. P., Rubio R. G., Pérez E. - Relationship Between Composition, Structure and Dynamics of Main-Chain Liquid Crystalline Polymers with Biphenyl Mesogens. In Liquid Crystalline Polymers: Volume 1–Structure and Chemistry, Thakur, V. K., Kessler M. R., Eds., Springer International Publishing: Cham, 2016, pp. 453-476. https://doi.org/10.1007/978-3-319-22894-5_15. DOI: https://doi.org/10.1007/978-3-319-22894-5_15

Damman S. B., Mercx F. P. M., Kootwijk-Damman C. M. - Liquid-Crystalline Main-Chain Polymers with a Poly(p-Phenylene Terephthalate) Backbone: 1. Synthesis, Characterization and Rheology of Polyesters with Alkoxy Side Chains, Polymer 34 (9) (1993) 1891-1897. https://doi.org/10.1016/0032-3861(93)90431-9. DOI: https://doi.org/10.1016/0032-3861(93)90431-9

Chang J. H., Jo B. W. - Blends of PBT with Rigid Thermotropic LCP Having Flexible Side Groups: Comparison of Their Tensile Properties with Semirigid Main-Chain TLCP Blends, Journal of Applied Polymer Science 60 (7) (1996) 939-946. https://doi.org/ 10.1002/(SICI)1097-4628(19960516)60:7<939::AID-APP3>3.0.CO,2-N. DOI: https://doi.org/10.1002/(SICI)1097-4628(19960516)60:7<939::AID-APP3>3.0.CO;2-N

Chung S. J., Kim K. K., Jin J. I. - Fluorescing Wholly Aromatic Polyesters Containing Diphenylanthracene Fluorophores, Polymer 40 (8) (1999) 1943-1953. https://doi.org/ 10.1016/S0032-3861(98)00420-0. DOI: https://doi.org/10.1016/S0032-3861(98)00420-0

Mori T., Kijima M. - Synthesis and Electroluminescence Properties of Carbazole-Containing 2,6-Naphthalene-Based Conjugated Polymers, European Polymer Journal 45 (4) (2009) 1149-1157. https://doi.org/10.1016/j.eurpolymj.2008.12.042. DOI: https://doi.org/10.1016/j.eurpolymj.2008.12.042

Lim W. L., Oo C. W., Kobayashi T. - Photoluminescent Enhancement of Polyesters via Photocrosslinking, Journal of Applied Polymer Science 132 (8) (2015). https://doi.org/ 10.1002/app.41504. DOI: https://doi.org/10.1002/app.41504

Gross R. A., Kalra B. - Biodegradable Polymers for the Environment, Science 297 (5582) (1997) 803-807. https://doi.org/10.1126/science.297.5582.803. DOI: https://doi.org/10.1126/science.297.5582.803

Ueda M., Sugita H., Sato M. - Synthesis of Poly(Benzoxazole)s by Direct Polycondensation of Dicarboxylic Acids with 3,3′-Dihydroxybenzidine Dihydrochloride Using Phosphorus Pentoxide/Methanesulfonic Acid as Condensing Agent and Solvent, Journal of Polymer Science Part A: Polymer Chemistry 24 (5) (1986) 1019-1026. https://doi.org/10.1002/pola.1986.080240517. DOI: https://doi.org/10.1002/pola.1986.080240517

Imai Y., Taoka I., Uno K., Iwakura Y. - Polybenzoxazoles and Polybenzothiazoles, Die Makromolekulare Chemie 83 (1) (1965) 167-178. https://doi.org/10.1002/macp. 1965.020830114. DOI: https://doi.org/10.1002/macp.1965.020830114

Ohta Y., Niiyama T., Yokoyama A., Yokozawa T. - Chain-Growth Condensation Polymerization Approach to Synthesis of Well-Defined Polybenzoxazole: Importance of Higher Reactivity of 3-Amino-4-Hydroxybenzoic Acid Ester Compared to 4-Amino-3-Hydroxybenzoic Acid Ester, Journal of Polymer Science Part A: Polymer Chemistry 52 (12) (2014) 1730-1736. https://doi.org/10.1002/pola.27174. DOI: https://doi.org/10.1002/pola.27174

Moyer W. W., Cole C., Anyos T. - Aromatic Polybenzoxazoles, Journal of Polymer Science Part A: General Papers 3 (6) (1965) 2107-2121. https://doi.org/10.1002/ pol.1965.100030603. DOI: https://doi.org/10.1002/pol.1965.100030603

Zhou C., Wang S., Zhuang Q., Han Z. - Enhanced Conductivity in Polybenzoxazoles Doped with Carboxylated Multi-Walled Carbon Nanotubes, Carbon 46 (9) (2008) 1232-1240. https://doi.org/10.1016/j.carbon.2008.05.005. DOI: https://doi.org/10.1016/j.carbon.2008.05.005

Ali M. A., Shimosegawa H., Nag A., Takada K., Kaneko T. - Synthesis of Thermotropic Polybenzoxazole Using 3-Amino-4-Hydroxybenzoic Acid, Journal of Polymer Research 24 (12) (2017) 214. https://doi.org/10.1007/s10965-017-1362-9. DOI: https://doi.org/10.1007/s10965-017-1362-9

Hsiao S. H., Chiou J. H. - Aromatic Polybenzoxazoles Containing Ether–Sulfone Linkages, Journal of Polymer Science Part A: Polymer Chemistry 39 (13) (2001) 2262-2270. https://doi.org/10.1002/pola.1203. DOI: https://doi.org/10.1002/pola.1203

Hilborn J. G., Labadie J. W., Hedrick J. L. - Poly(Aryl ether-benzoxazoles), macromo-lecules 23 (11) (1990) 2854-2861. https://doi.org/10.1021/ma00213a006. DOI: https://doi.org/10.1021/ma00213a006

Smith J. G., Connell J. W., Hergenrother P. M. - Chemistry and Properties of Poly (Arylene Ether Benzoxazole), Polymer 33 (8) (1992) 1742-1747. https://doi.org/10.1016/ 0032-3861(92)91076-E. DOI: https://doi.org/10.1016/0032-3861(92)91076-E

Miyazaki T., Hasegawa M. - Highly Tough and Highly Transparent Soluble Polybenzoxazoles, High Performance Polymers 19 (3) (2007) 243-269. https://doi.org/ 10.1177/0954008306076265. DOI: https://doi.org/10.1177/0954008306076265

Oishi Y., Konnno A., Oravec J., Mori K. - Synthesis and Properties of Fluorine-Containing Polybenzoxazoles by In Situ Silylation Method, Journal of Photopolymer Science and Technology 19 (5) (2006) 669-672. https://doi.org/10.2494/ photopolymer.19.669. DOI: https://doi.org/10.2494/photopolymer.19.669

Feig V. R., Tran H., Bao Z. - Biodegradable Polymeric Materials in Degradable Electronic Devices, ACS Central Science 4 (3) (2018) 337-348. https://doi.org/10.1021/ acscentsci.7b00595. DOI: https://doi.org/10.1021/acscentsci.7b00595

Kohl P. A. - Low-Dielectric Constant Insulators for Future Integrated Circuits and Packages, Annual Review of Chemical and Biomolecular Engineering 2 (2011) 379-401. https://doi.org/10.1146/annurev-chembioeng-061010-114137. DOI: https://doi.org/10.1146/annurev-chembioeng-061010-114137

Volksen W., Miller R. D., Dubois G. - Low Dielectric Constant Materials, Chemical Reviews 110 (1) (2010) 56-110. https://doi.org/10.1021/cr9002819. DOI: https://doi.org/10.1021/cr9002819

Lin Q., Cohen S. A., Gignac L., Herbst B., Klaus D., Simonyi E., Hedrick J., Warlaumont J., Lee H. J., Wu W. - Low Dielectric Constant Nanocomposite Thin Films Based on Silica Nanoparticle and Organic Thermosets, Journal of Polymer Science Part B: Polymer Physics 45 (12) (2007) 1482-1493. https://doi.org/10.1002/polb.21165. DOI: https://doi.org/10.1002/polb.21165

Baik D., Lee W., Park Y. - Interfacial Characterization of polybenzoxazole/copper System, Molecular Crystals and Liquid Crystals 424 (1) (2004) 265-271. https://doi.org/ 10.1080/15421400490506270. DOI: https://doi.org/10.1080/15421400490506270

Hasegawa M., Kobayashi J., Vladimirov L. - Solution-processable low-CTE polybenzo-xazoles, Journal of Photopolymer Science and Technology 17 (2) (2004) 253-258. https://doi.org/10.2494/photopolymer.17.253. DOI: https://doi.org/10.2494/photopolymer.17.253

Fukumaru T., Fujigaya T., Nakashima N. - Design and Preparation of Porous Polybenzoxazole Films Using the Tert-Butoxycarbonyl Group as a Pore Generator and Their Application for Patternable Low-k Materials, Polymer Chemistry 3 (2) (2012) 369-376. https://doi.org/10.1039/C1PY00470K. DOI: https://doi.org/10.1039/C1PY00470K

MacDonald S. A., Ito H., Willson C. G. - Advances in the Design of Organic Resist Materials, Microelectronic Engineering 1 (4) (1983) 269-293. https://doi.org/ 10.1016/0167-9317(83)90017-5. DOI: https://doi.org/10.1016/0167-9317(83)90017-5

Wang Y., Yu J., Zhu J., Hu Z. - Hyperbranched Polybenzoxazoles Incorporated Polybenzoxazoles for High-Performance and Low-K Materials, Journal of Polymer Science Part A: Polymer Chemistry 54 (11) (2016) 1623-1632. https://doi.org/ 10.1002/pola.28018. DOI: https://doi.org/10.1002/pola.28018

Fukukawa K., Shibasaki Y., Ueda M. - A Photosensitive Semi-Alicyclic Poly (Benzoxazole) with High Transparency and Low Dielectric Constant, Macromolecules 37 (22) (2004) 8256-8261. https://doi.org/10.1021/ma049063i. DOI: https://doi.org/10.1021/ma049063i

Tsuchiya K., Ishii H., Shibasaki Y., Ando S., Ueda M. - Synthesis of a Novel Poly(Binaphthylene Ether) with a Low Dielectric Constant, Macromolecules 37 (13) (2004) 4794-4797. https://doi.org/10.1021/ma049390q. DOI: https://doi.org/10.1021/ma049390q

Asensio J. A., Borrós S., Gómez-Romero P. - Enhanced Conductivity in Polyanion-Containing Polybenzimidazoles, Improved Materials for Proton-Exchange Membranes and PEM Fuel Cells, Electrochemistry Communications 5 (11) (2003) 967-972. https://doi.org/10.1016/j.elecom.2003.09.007. DOI: https://doi.org/10.1016/j.elecom.2003.09.007

He R., Li Q., Bach A., Jensen J. O., Bjerrum N. J. - Physicochemical Properties of Phosphoric Acid Doped Polybenzimidazole Membranes for Fuel Cells, Journal of Membrane Science 277 (1) (2006) 38-45. https://doi.org/10.1016/j.memsci.2005.10.005. DOI: https://doi.org/10.1016/j.memsci.2005.10.005

Sannigrahi A., Arunbabu D., Sankar, R. M., Jana T. - Tuning the Molecular Properties of Polybenzimidazole by Copolymerization, Journal of Physical Chemistry B111 (42) (2007) 12124-12132. https://doi.org/10.1021/jp073973v. DOI: https://doi.org/10.1021/jp073973v

Asensio J. A., Borrós S., Gómez-Romero P. - Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-Benzimidazole) Membranes, Journal of the Electrochemical Society 151 (2) (2004) A304-A310. https://doi.org/10.1149/1.1640628. DOI: https://doi.org/10.1149/1.1640628

Pahari S., Roy S. - Structural and Conformational Properties of Polybenzimidazoles in Melt and Phosphoric Acid Solution: A Polyelectrolyte Membrane for Fuel Cells, RSC Advances 6 (10) (2016) 8211-8221. https://doi.org/10.1039/C5RA22159E. DOI: https://doi.org/10.1039/C5RA22159E

Omar N., Daowd M., Bossche P. van den Hegazy O., Smekens J., Coosemans T., Mierlo J. van - Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles Assessment of Electrical Characteristics, Energies 5 (8) (2012) 2952-2988. https://doi.org/10.3390/en5082952. DOI: https://doi.org/10.3390/en5082952

Endo K. - Fluorinated Amorphous Carbon as a Low-Dielectric-Constant Interlayer Dielectric. MRS Bulletin 22 (10) (1997) 55-58. https://doi.org/10.1557/ S0883769400034217. DOI: https://doi.org/10.1557/S0883769400034217

Kloster G., Scherban T., Xu G., Blaine J., Sun B., Zhou Y. - Porosity Effects on Low-k Dielectric Film Strength and Interfacial Adhesion, In Proceedings of the IEEE 2002 International Interconnect Technology Conference (Cat. No.02EX519) 2002, pp. 242-244. https://doi.org/10.1109/IITC.2002.1014946. DOI: https://doi.org/10.1109/IITC.2002.1014946

Downloads

Published

01-11-2022

How to Cite

[1]
A. Nag and T. Kaneko, “Nature-derived Ultrahigh-performance Aromatic Bioplastics”, Vietnam J. Sci. Technol., vol. 60, no. 5, pp. 739–755, Nov. 2022.

Issue

Section

Review