A critical review on wireless power transfer systems using metamaterials
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16954Keywords:
Wireless power transfers, metamaterials, negative permeability, evanescent waveAbstract
Recently, wireless power transfer (WPT) has been a topic of interest due to its attractive applications in modern life. Starting from Tesla’s idea about a century ago, WPT has developed tremendously and appeared in many of the most modern electronic devices. However, some WPT systems still have limitations such as short transmission distance, low transfer efficiency, and electromagnetic leakage. Magnetic metamaterial (MM) is a potential candidate that can overcome the above disadvantages of WPT. This paper is intended to present an overview of recent advances and research progress on WPT systems. Three classes of WPT consisting of short-range, mid-range, and long-range, will be analyzed in detail both in terms of fundamentals and applications. Especially, MM configurations can be used to enhance the near-field WPT efficiency and reduce the leakage of electromagnetic field will also be evaluated. This article is expected to provide a comprehensive review of the mechanism and applications as well as the future development of metamaterial-based WPT systems.
Downloads
References
Song M, Jayathurathnage P., Zanganeh E., Krasikova M., Smirnov P., Belov P., Kapitanova P., Simovski C., Tretyakov S., Krasnok A. - Wireless power transfer based on novel physical concepts, Nat. Electron. 4 (2021) 707-716. https://doi.org/10.1038/s41928-021-00658-x. DOI: https://doi.org/10.1038/s41928-021-00658-x
Song M., Belov P., Kapitanova P. - Wireless power transfer inspired by the modern trends in electromagnetics, Appl. Phys. Rev. 4 (2017) 1-19. https://doi.org/10.1063/1.4981396. DOI: https://doi.org/10.1063/1.4981396
Shinohara N. - Power without wires, IEEE Microw. Mag. 12 (2011) S64-S73. https://doi.org/10.1109/MMM.2011.942732. DOI: https://doi.org/10.1109/MMM.2011.942732
Tesla N. - Apparatus for transmitting electrical energy, 1119732, 1914.
Brown W. C. - Adapting microwave techniques to help solve future energy problems, IEEE Trans. Microw. Theory Tech. MTT-21 (1973) 753-763. https://doi.org/10.1109/GMTT.1973.1123144. DOI: https://doi.org/10.1109/TMTT.1973.1128128
Matsumoto H. - Research on solar power satellites and microwave power transmission in Japan, IEEE Microw. Mag. 3 (2002) 36–45. https://doi.org/10.1109/MMW.2002.1145674. DOI: https://doi.org/10.1109/MMW.2002.1145674
Kesler M. - Highly resonant wireless power transfer: safe, efficient, and over distance, 2013. http://www.witricity.com/pdfs/highly-resonant-power-transfer-kesler-witricity-2013.pdf.
Hui S. Y. - Planar wireless charging technology for portable electronic products and Qi, Proc. IEEE. 101 (2013) 1290-1301. https://doi.org/10.1109/JPROC.2013.2246531. DOI: https://doi.org/10.1109/JPROC.2013.2246531
Mayordomo I., Drager T., Spies P., Bernhard J., Pflaum A. - An overview of technical challenges and advances of inductive wireless power transmission, Proc. IEEE. 101 (2013) 1302-1311. https://doi.org/10.1109/JPROC.2013.2243691. DOI: https://doi.org/10.1109/JPROC.2013.2243691
Ha-Van N., Le-Huu H., Le M. T., Park K., Seo C. - Free-positioning wireless power transfer using a 3D transmitting coil for portable devices, J. Electromagn Eng Sci. 20 (2020) 270-276. https://doi.org/10.26866/jees.2020.20.4.270. DOI: https://doi.org/10.26866/jees.2020.20.4.270
Park J., Park C., Shin Y., Kim D., Park B., Cho J., Choi J., Ahn S. - Planar multiresonance reactive shield for reducing electromagnetic interference in portable wireless power charging application, Appl. Phys. Lett. 114 (2019). https://doi.org/10.1063/1.5097038. DOI: https://doi.org/10.1063/1.5097038
Alhamrouni I., Iskandar M., Salem M., Awalin L. J., Jusoh A., Sutikno T. - Application of inductive coupling for wireless power transfer, Int. J. Power Electron. Drive Syst. 11 (2020) 1109-1116. DOI: https://doi.org/10.11591/ijpeds.v11.i3.pp1109-1116
Zhou H., Zhu B., Hu W., Liu Z., Gao X. - Modelling and practical implementation of 2-Coil wireless power transfer systems, J. Electr. Comput. Eng. 2014 (2014) 1-8. https://doi.org/10.1155/2014/906537. DOI: https://doi.org/10.1155/2014/906537
Lee W. S., Oh K.-S., Yu J. W. - Distance-insensitive wireless power transfer and near-field communication using a current-controlled loop with a loaded capacitance, IEEE Trans. Antennas Propag. 62 (2014) 936-940. https://doi.org/10.1109/TAP.2013.2290549. DOI: https://doi.org/10.1109/TAP.2013.2290549
Wei X., Wang Z., Dai H. - A critical review of wireless power transfer via strongly coupled magnetic resonances, Energies. 7 (2014) 4316-4341. https://doi.org/10.3390 /en7074316. DOI: https://doi.org/10.3390/en7074316
Bevacqua M. T., Bellizzi G. G., Merenda M. - An efficient far-field wireless power transfer via field intensity shaping techniques, Electronics. 10 (2021) 1-13. https://doi.org/10.3390/electronics10141609. DOI: https://doi.org/10.3390/electronics10141609
Brown W. C., Eves E. E. - Beamed microwave power transmission and its application to space, IEEE Trans. Microw. Theory Tech. 40 (1992) 1239-1250. https://doi.org/10.1109 /22.141357. DOI: https://doi.org/10.1109/22.141357
Lerosey G. - Wireless power on the move, Nature. 546 (2017) 354-355. https://doi.org/ 10.1038/546354a. DOI: https://doi.org/10.1038/546354a
Moon S., Moon G. - Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers, IEEE Trans. Power Electron. 31 (2016) 6844-6854. https://doi.org/10.1109/TPEL.2015.2506779. DOI: https://doi.org/10.1109/TPEL.2015.2506779
Liu Z., Zhong Z., Guo Y. X. - Rapid design approach of optimal efficiency magnetic resonant wireless power transfer system, Electron. Lett. 52 (2016) 314-315. https://doi.org/https://doi.org/10.1049/el.2015.3571. DOI: https://doi.org/10.1049/el.2015.3571
Pokharel R. K., Barakat A., Alshhawy S., Yoshitomi K., Sarris C. - Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications, Sci. Rep. 11 (2021) 1-10. https://doi.org/ 10.1038/s41598-021-84333-3. DOI: https://doi.org/10.1038/s41598-021-84333-3
Pham T. S., Nguyen T. D., Tung B. S., Khuyen B. X., Hoang T. T., Ngo Q. M., Hiep L. T. H., Lam V. D. - Optimal frequency for magnetic resonant wireless power transfer in conducting medium, Sci. Rep. 11 (2021) 1-11. https://doi.org/10.1038/s41598-021-98153-y. DOI: https://doi.org/10.1038/s41598-021-98153-y
Xu D., Zhang Q., Li X. - Implantable magnetic resonance wireless power transfer system based on 3D flexible coils, Sustainability. 12 (2020) 4149. https://doi.org/10.3390/ su12104149. DOI: https://doi.org/10.3390/su12104149
Assawaworrarit S., Yu X., Fan S. - Robust wireless power transfer using a nonlinear parity-time-symmetric circuit, Nature. 546 (2017) 387-390. https://doi.org/10.1038/ nature22404. DOI: https://doi.org/10.1038/nature22404
Choi J. H., Kang S. H., Jung C. W. - Magnetic resonant wireless power transfer with L-shape arranged resonators for laptop computer, J. Electromagn. Eng. Sci. 17 (2017) 126-132. https://doi.org/10.5515/JKIEES.2017.17.3.126. DOI: https://doi.org/10.5515/JKIEES.2017.17.3.126
Kurs A., Karalis A., Moffatt R., Joannopoulos J. D., Fisher P., Soljačić M. - Wireless power transfer via strongly coupled magnetic resonances, Science 317 (2007) 83-86. https://doi.org/10.1126/science.1143254. DOI: https://doi.org/10.1126/science.1143254
Roberts D. M., Clements A. P., McDonald R., Bobowski J. S., Johnson T. - Mid-range wireless power transfer at 100 MHz using magnetically coupled loop-gap resonators, IEEE Trans. Microw. Theory Tech. 69 (2021) 3510-3527. https://doi.org/10.1109/ TMTT.2021.3073133. DOI: https://doi.org/10.1109/TMTT.2021.3073133
Shi L., Rasool N., Zhu H., Huang K., Yang Y. - Design and experiment of a reconfigurable magnetic resonance coupling wireless power transmission system, IEEE Microw. Wirel. Components Lett. 30 (2020) 705-708. https://doi.org/10.1109/LMWC.2020.2997068. DOI: https://doi.org/10.1109/LMWC.2020.2997068
Mollaei M. S. M., Jayathurathnage P., Tretyakov S. A., Simovski C. R. - High-impedance wireless power transfer transmitter coils for freely positioning receivers, IEEE Access. 9 (2021) 42994-43000. https://doi.org/10.1109/ACCESS.2021.3064212. DOI: https://doi.org/10.1109/ACCESS.2021.3064212
Huang X., Zhang C., Cong L., Cai R., Yang F., Lu C. - Development and prospects of metamaterial in wireless power transfer, IET Power Electron. 14 (2021) 2423-2440. https://doi.org/https://doi.org/10.1049/pel2.12189. DOI: https://doi.org/10.1049/pel2.12189
Lee W., Yoon Y. K. - Wireless power transfer systems using metamaterials: A review, IEEE Access. 8 (2020) 147930-147947. https://doi.org/10.1109/ACCESS.2020.3015176. DOI: https://doi.org/10.1109/ACCESS.2020.3015176
Kung M. L., Lin K. H. - Investigation of multi-layer metamaterial for enhancing efficiency of near-field wireless power transfer systems, in: 2018 Prog. Electromagn. Res. Symp., 2018: pp. 2484-2488. https://doi.org/10.23919/PIERS.2018.8597730. DOI: https://doi.org/10.23919/PIERS.2018.8597730
Sun K., Fan R., Zhang X., Zhang Z., Shi Z., Wang N., Xie P., Wang Z., Fan G., Liu H., Liu C., Li T., Yan C., Guo Z. - An overview of metamaterials and their achievements in wireless power transfer, J. Mater. Chem. C. 6 (2018) 2925-2943. https://doi.org/10.1039 /C7TC03384B. DOI: https://doi.org/10.1039/C7TC03384B
Das R., Basir A., Yoo H. - A metamaterial-coupled wireless power transfer system based on cubic high-dielectric resonators, IEEE Trans. Ind. Electron. 66 (2019) 7397-7406. https://doi.org/10.1109/TIE.2018.2879310. DOI: https://doi.org/10.1109/TIE.2018.2879310
Rong C., Lu C., Zeng Y., Tao X., Liu X., Liu R., He X., Liu M. - A critical review of metamaterial in wireless power transfer system, IET Power Electron. 14 (2021) 1541-1559. https://doi.org/https://doi.org/10.1049/pel2.12099. DOI: https://doi.org/10.1049/pel2.12099
Mi C. C., Buja G., Choi S. Y., Rim C. T. - Modern advances in wireless power transfer systems for roadway powered electric vehicles, IEEE Trans. Ind. Electron. 63 (2016) 6533-6545. https://doi.org/10.1109/TIE.2016.2574993. DOI: https://doi.org/10.1109/TIE.2016.2574993
Garnica J., Chinga R. A., Lin J. - Wireless power transmission: From far field to near field, Proc. IEEE. 101 (2013) 1321-1331. https://doi.org/10.1109/JPROC.2013.2251411. DOI: https://doi.org/10.1109/JPROC.2013.2251411
Lin J. C. - Space solar-power stations, wireless power transmissions, and biological implications, IEEE Microw. Mag. 3 (2002) 36–42. https://doi.org/10.1109/6668.990673. DOI: https://doi.org/10.1109/6668.990673
Hui S. Y. R., Zhong W., Lee C. K. - A critical review of recent progress in mid-range wireless power transfer, IEEE Trans. Power Electron. 29 (2014) 4500-4511. https://doi.org/10.1109/TPEL.2013.2249670. DOI: https://doi.org/10.1109/TPEL.2013.2249670
Khan H., Ali S. A., Wajid M., Alam M. S. - Antenna array design on flexible substrate for wireless power transfer, Front. Eng. Built Environ. 1 (2021) 55-67. https://doi.org/10.1108/FEBE-03-2021-0018. DOI: https://doi.org/10.1108/FEBE-03-2021-0018
Xia M., Aïssa S. - On the efficiency of far-field wireless power transfer, IEEE Trans. Signal Process. 63 (2015) 2835-2847. https://doi.org/10.1109/TSP.2015.2417497. DOI: https://doi.org/10.1109/TSP.2015.2417497
Zhang Z., Pang H., Georgiadis A., Cecati C. - Wireless power transfer - an overview, IEEE Trans. Ind. Electron. 66 (2019) 1044-1058. https://doi.org/10.1109/TIE.2018. 2835378. DOI: https://doi.org/10.1109/TIE.2018.2835378
Ali A., Yasin M. N. M., Husin M. F. C., Hambali N. A. M. A. - Design and analysis of 2-coil wireless power transfer (WPT) using magnetic coupling technique, Int. J. Power Electron. Drive Syst. 10 (2019) 611-616. DOI: https://doi.org/10.11591/ijpeds.v10.i2.pp611-616
Alrawashdeh R. - A review on wireless power transfer in free space and conducting lossy media, Jordanian J. Comput. Inf. Technol. 03 (2017) 71-88. https://doi.org/10.5455/ jjcit.71-1483030287.
Younesiraad H., Bemani M. - Analysis of coupling between magnetic dipoles enhanced by metasurfaces for wireless power transfer efficiency improvement, Sci. Rep. 8 (2018) 1-11. https://doi.org/10.1038/s41598-018-33174-8. DOI: https://doi.org/10.1038/s41598-018-33174-8
Chu S., Stevens C. J., Shamonina E. - Wireless power transfer in attenuating media, AIP Adv. 11 (2021) 1-7. https://doi.org/10.1063/5.0059932. DOI: https://doi.org/10.1063/5.0059932
Seo D. W., Lee J. H., Lee H. - Study on two-coil and four-coil wireless power transfer system using Z-parameter approach, ETRI J. 38 (2016) 568-578. https://doi.org/10.4218 /etrij.16.0115.0692.
Houran M. A., Yang X., Chen W. - Magnetically coupled resonance WPT: review of compensation topologies, resonator structures with misalignment, and EMI diagnostics, Electronics. 7 (2018) 1-45. https://doi.org/10.3390/electronics7110296. DOI: https://doi.org/10.3390/electronics7110296
Zhang X., Meng H., Wei B., Wang S., Yang Q. - An improved three-coil wireless power link to increase spacing distance and power for magnetic resonant coupling system, EURASIP J. Wirel. Commun. Netw. 2018 (2018) 1-8. https://doi.org/10.1186/s13638-018-1148-8. DOI: https://doi.org/10.1186/s13638-018-1148-8
Pham T. S., Nguyen T. V., Nguyen D. K., Ha T. K. D. - Investigation on coil misalignment affect magnetic resonant wireless power transfer system, Journal of Military Science and Technology. 75 (2021) 57-64. (in Vietnamese).
Kim D., Kim J., Park Y. - Optimization and design of small circular coils in a magnetically coupled wireless power transfer system in the megahertz frequency, IEEE Trans. Microw. Theory Tech. 64 (2016) 2652-2663. https://doi.org/10.1109/ TMTT.2016.2582874.
Kang S. H., Nguyen V. T., Jung C. W. - Analysis of MR-WPT using planar textile resonators for wearable applications, IET Microwaves, Antennas Propag. 10 (2016) 1541-1546. https://doi.org/https://doi.org/10.1049/iet-map.2016.0024. DOI: https://doi.org/10.1049/iet-map.2016.0024
Liu X., Wang G. - A novel wireless power transfer system with double intermediate resonant coils, IEEE Trans. Ind. Electron. 63 (2016) 2174-2180. https://doi.org/ 10.1109/TIE.2015.2510512.
Zhang Y., Zhao Z. - Frequency splitting analysis of two-coil resonant wireless power transfer, IEEE Antennas Wirel. Propag. Lett. 13 (2014) 400-402. https://doi.org/10.1109/LAWP.2014.2307924. DOI: https://doi.org/10.1109/LAWP.2014.2307924
Ishizaki T., Komori T., Ishida T., Awai I. - Comparative study of coil resonators for wireless power transfer system in terms of transfer loss, IEICE Electron. Express. 7 (2010) 785-790. https://doi.org/10.1587/elex.7.785. DOI: https://doi.org/10.1587/elex.7.785
Kang S. H., Park S., Jung C. W. - Textile resonators using a sintered metal conductor for wearable MR-WPT with high efficiency and wearability, Microw. Opt. Technol. Lett. 59 (2017) 668-672. https://doi.org/https://doi.org/10.1002/mop.30363. DOI: https://doi.org/10.1002/mop.30363
Sample A. P., Meyer D. T., Smith J. R. - Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Trans. Ind. Electron. 58 (2011) 544-554. https://doi.org/10.1109/TIE.2010.2046002. DOI: https://doi.org/10.1109/TIE.2010.2046002
Sample A. P., Waters B. H., Wisdom S. T., Smith J. R. - Enabling seamless wireless power delivery in dynamic environments, Proc. IEEE. 101 (2013) 1343-1358. https://doi.org/10.1109/JPROC.2013.2252453. DOI: https://doi.org/10.1109/JPROC.2013.2252453
Veselago V. G. - The electrodynamics of substances with simultaneously negative values of epsilon and mu, Sov. Phys. Uspekhi. 10 (1968) 509-514. https://doi.org/ 10.1070/pu1968v010n04abeh003699. DOI: https://doi.org/10.1070/PU1968v010n04ABEH003699
Pendry J. B., Holden A. J., Stewart W. J., Youngs I. - Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 (1996) 4773-4776. DOI: https://doi.org/10.1103/PhysRevLett.76.4773
Pendry J. B., Holden A. J., Robbins D. J., Stewart W. J. - Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. 47 (1999) 2075-2084. https://doi.org/10.1109/22.798002. DOI: https://doi.org/10.1109/22.798002
Rao S., Ong K. - Amplification of evanescent waves in a lossy left-handed material slab, Phys. Rev. B - Condens. Matter Mater. Phys. 68 (2003) 1-4. https://doi.org/10.1103 /PhysRevB.68.113103. DOI: https://doi.org/10.1103/PhysRevB.68.113103
Smith D. R., Padilla W. J., Vier D. C., Nemat-Nasser S. C., Schultz S. - Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184-4187. https://doi.org/10.1103/PhysRevLett.84.4184. DOI: https://doi.org/10.1103/PhysRevLett.84.4184
Pendry J. B. - Negative refraction, Contemp. Phys. 45 (2004) 191-202. https://doi.org/ 10.1080/00107510410001667434. DOI: https://doi.org/10.1080/00107510410001667434
Nguyen H. T., Bui T. S., Yan S., Vandenbosch G. A. E., Lievens P., Vu L. D., E. Janssens - Broadband negative refractive index obtained by plasmonic hybridization in metamaterials, Appl. Phys. Lett. 109 (2016) 1-5. https://doi.org/10.1063/1.4968802. DOI: https://doi.org/10.1063/1.4968802
Tung B. S., Khuyen B. X., Linh P. T., Tung N. T., Manh D. H., Lam V. D. - Polarization-insensitive electromagnetically-induced transparency in planar metamaterial based on coupling of ring and zigzag spiral resonators, Mod. Phys. Lett. B. 34 (2020) 2050093. https://doi.org/10.1142/S0217984920500931. DOI: https://doi.org/10.1142/S0217984920500931
Almoneef T. S., Ramahi O. M. - Metamaterial electromagnetic energy harvester with near unity efficiency, Appl. Phys. Lett. 106 (2015) 1-4. https://doi.org/10.1063/1.4916232. DOI: https://doi.org/10.1063/1.4916232
Khuyen B. X., Tung B. S., Dung N. V., Yoo Y. J., Kim Y. J., Kim K. W., Lam V. D., Yang J. G., Lee Y. - Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization, J. Appl. Phys. 117 (2015) 1-7. https://doi.org/10.1063/ 1.4923053. DOI: https://doi.org/10.1063/1.4923053
Tiep D. H., Khuyen B. X., Tung B. S., Kim Y. J., Hwang J. S., Lam V. D., Lee Y. P. - Enhanced-bandwidth perfect absorption based on a hybrid metamaterial, Opt. Mater. Express. 8 (2018) 2751-2759. https://doi.org/10.1364/OME.8.002751. DOI: https://doi.org/10.1364/OME.8.002751
Khuyen B. X., Tung B. S., Yoo Y. J., Kim Y. J., Kim K. W., Chen L. Y., Lam V. D., Lee Y. - Miniaturization for ultrathin metamaterial perfect absorber in the VHF band, Sci. Rep. 7 (2017) 1-7. https://doi.org/10.1038/srep45151. DOI: https://doi.org/10.1038/srep45151
Ha D. T., Tung B. S., Khuyen B. X., Pham T. S., Tung N. T., Tung N. H., Hoa N. T., Lam V. D., Zheng H., Chen L., Lee Y. - Dual-band, polarization-insensitive, ultrathin and flexible metamaterial absorber based on high-order magnetic resonance, Photonics 8 (2021) 574. https://doi.org/10.3390/photonics8120574. DOI: https://doi.org/10.3390/photonics8120574
Long L. V., Khiem N. S., Tung B. S., Tung N. T., Giang T. T., Son P. T., Khuyen B. X., Lam V. D., Chen L., Zheng H., Lee Y. - Flexible broadband metamaterial perfect absorber based on graphene-conductive inks, Photonics. 8 (2021) 440. https://doi.org/10.3390/ photonics8100440. DOI: https://doi.org/10.3390/photonics8100440
Singh G., Ni R., Marwaha A. - A review of metamaterials and its applications, Int. J. Eng. Trends Technol. 19 (2015) 305-310. https://doi.org/10.14445/22315381/ijett-v19p254. DOI: https://doi.org/10.14445/22315381/IJETT-V19P254
Bui T. S., Dao T. D., Dang L. H., Vu L. D., Ohi A., Nabatame T., Lee Y., Nagao T., Hoang C. V. - Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules, Sci. Rep. 6 (2016) 1-7. https://doi.org/10.1038/srep32123. DOI: https://doi.org/10.1038/srep32123
Ha D. T., Dzung N. D., Ngoc N. V., Tung B. S., Pham T. S., Lee Y., Chen L. Y., Khuyen B. X., Lam V. D. - Switching between perfect absorption and polarization conversion, based on hybrid metamaterial in the GHz and THz bands, J. Phys. D. Appl. Phys. 54 (2021) 1-10. https://doi.org/10.1088/1361-6463/abeb97. DOI: https://doi.org/10.1088/1361-6463/abeb97
Nguyen T. H., Bui S. T., Nguyen X. C., Vu D. L., Bui X. K. - Tunable broadband-negative-permeability metamaterials by hybridization at THz frequencies, RSC Adv. 10 (2020) 28343-28350. https://doi.org/10.1039/D0RA04612D. DOI: https://doi.org/10.1039/D0RA04612D
Radkovskaya A., Petrov P., Kiriushechkina S., Satskiy A., Ivanyukovich M., Vakulenko A., Prudnikov V., Kotelnikova O., Korolev A., Zakharov P. - Magnetic metamaterials: Coupling and permeability, J. Magn. Magn. Mater. 459 (2018) 187-190. https://doi.org/10.1016/j.jmmm.2017.11.031. DOI: https://doi.org/10.1016/j.jmmm.2017.11.031
Zhang Y., Tang H., Yao C., Li Y., Xiao S. - Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission, AIP Adv. 5 (2015) 1-9. https://doi.org/10.1063/1.4907043. DOI: https://doi.org/10.1063/1.4907043
Smith D. R., Schultz S., Markoš P., Soukoulis C. M. - Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B. 65 (2002) 1-5. https://doi.org/10.1103/PhysRevB.65.195104. DOI: https://doi.org/10.1103/PhysRevB.65.195104
Smith D. R., Vier D. C., Koschny T., Soukoulis C. M. - Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E. 71 (2005) 1-11. https: //doi.org/10.1103/PhysRevE.71.036617. DOI: https://doi.org/10.1103/PhysRevE.71.036617
Rothwell E. J., Frasch J. L., Ellison S. M., Chahal P., Ouedraogo R. O. - Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials, Prog. Electromagn. Res. 157 (2016) 31-47. https://doi.org/ 10.2528/PIER16071706. DOI: https://doi.org/10.2528/PIER16071706
Chen X., Grzegorczyk T. M., Wu B. I., Pacheco J., Kong J. A. - Robust method to retrieve the constitutive effective parameters of metamaterials, Phys. Rev. E. 70 (2004) 1-7. https://doi.org/10.1103/PhysRevE.70.016608. DOI: https://doi.org/10.1103/PhysRevE.70.016608
Pham T. S., Nguyen T. D., Vu D. L. - Metamaterials for improving efficiency of magnetic resonant wireless power transfer applications, Commun. Phys. 32 (2022) 1-8. DOI: https://doi.org/10.15625/0868-3166/16049
Ranaweera A. L. A. K., Duong T. P., Lee J. W. - Experimental investigation of compact metamaterial for high efficiency mid-range wireless power transfer applications, J. Appl. Phys. 116 (2014) 1-8. https://doi.org/10.1063/1.4891715. DOI: https://doi.org/10.1063/1.4891715
Harris W. C., Stancil D. D., Ricketts D. S. - Improved wireless power transfer efficiency with non-perfect lenses, Appl. Phys. Lett. 114 (2019) 1-4. https://doi.org/ 10.1063/1.5081629. DOI: https://doi.org/10.1063/1.5081629
Zhao Y. - Evanescent wave amplification and subwavelength imaging by ultrathin uniaxial μ-near-zero material, AIP Adv. 4 (2014) 1-6. https://doi.org/10.1063/1.4866579. DOI: https://doi.org/10.1063/1.4866579
Lee W., Yoon Y. K. - Rollable metamaterial screen for magnetic resonance coupling-based high-efficiency wireless power transfer, Int. J. Microw. Wirel. Technol. 13 (2021) 365-373. https://doi.org/DOI: 10.1017/S1759078720001221. DOI: https://doi.org/10.1017/S1759078720001221
Shamonina E., Kalinin V. A., Ringhofer K. H., Solymar L. - Magneto-inductive waveguide, Electron. Lett. 38 (2002) 371-373. https://doi.org/10.1049/el:20020258. DOI: https://doi.org/10.1049/el:20020258
Chu S., Luloff M. S., Yan J., Petrov P., Stevens C. J., Shamonina E. - Magnetoinductive waves in attenuating media, Sci. Rep. 11 (2021) 1-12. https://doi.org/10.1038/s41598-021-85838-7. DOI: https://doi.org/10.1038/s41598-021-85838-7
Sandoval F. S., Delgado S. M. T., Moazenzadeh A., Wallrabe U. - A 2-D magnetoinductive wave device for freer wireless power transfer, IEEE Trans. Power Electron. 34 (2019) 10433-10445. https://doi.org/10.1109/TPEL.2019.2904875. DOI: https://doi.org/10.1109/TPEL.2019.2904875
Shamonina E., Kalinin V. A., Ringhofer K .H., Solymar L. - Magnetoinductive waves in one, two, three dimensions, J. Appl. Phys. 92 (2002) 6252-6261. https://doi.org/ 10.1063/1.1510945. DOI: https://doi.org/10.1063/1.1510945
Yang F., Song J., Guo Z., Wu X., Zhu K., Jiang J., Sun Y., Jiang H., Li Y., Chen H. - Actively controlled asymmetric edge states for directional wireless power transfer, Opt. Express. 29 (2021) 7844-7857. https://doi.org/10.1364/OE.417887. DOI: https://doi.org/10.1364/OE.417887
Song J., Yang F., Guo Z., Wu X., Zhu K., Jiang J., Sun Y., Li Y., Jiang H., Chen H. - Wireless power transfer via topological modes in dimer chains, Phys. Rev. Appl. 15 (2021) 1-13. https://doi.org/10.1103/PhysRevApplied.15.014009. DOI: https://doi.org/10.1103/PhysRevApplied.15.014009
Feis J., Stevens C. J., Shamonina E. - Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms, Appl. Phys. Lett. 117 (2020) 1-6. https://doi.org/10.1063/5.0024077. DOI: https://doi.org/10.1063/5.0024077
Syms R. R. A., Shamonina E., Solymar L. - Positive and negative refraction of magnetoinductive waves in two dimensions, Eur. Phys. J. B. Condens. Matter Complex Syst. 46 (2005) 301-308. https://doi.org/10.1140/epjb/e2005-00253-9. DOI: https://doi.org/10.1140/epjb/e2005-00253-9
Pham T. S., Bui H. N., Lee J. W. - Wave propagation control and switching for wireless power transfer using tunable 2-D magnetic metamaterials, J. Magn. Magn. Mater. 485 (2019) 126-135. https://doi.org/10.1016/j.jmmm.2019.04.034. DOI: https://doi.org/10.1016/j.jmmm.2019.04.034
Sydoruk O., Zhuromskyy O., Shamonina E., Solymar L. - Phonon-like dispersion curves of magnetoinductive waves, Appl. Phys. Lett. 87 (2005) 1-3. https://doi.org/ 10.1063/1.2011789. DOI: https://doi.org/10.1063/1.2011789
Younesiraad H., Bemani M., Matekovits L. - Optimal Huygens’ metasurface for wireless power transfer efficiency improvement, IEEE Access. 8 (2020) 216409-216418. https://doi.org/10.1109/ACCESS.2020.3041337. DOI: https://doi.org/10.1109/ACCESS.2020.3041337
Rong C., Tao X., Lu C., Hu Z., Huang X., Zeng Y., Liu M. - Analysis and optimized design of metamaterials for mid-range wireless power transfer using a class-E RF power amplifier, Appl. Sci. 9 (2019) 1-14. https://doi.org/10.3390/app9010026. DOI: https://doi.org/10.3390/app9010026
Song M., Baryshnikova K., Markvart A., Belov P., Nenasheva E., Simovski C., Kapitanova P. - Smart table based on a metasurface for wireless power transfer, Phys. Rev. Appl. 11 (2019) 1-9. https://doi.org/10.1103/PhysRevApplied.11.054046. DOI: https://doi.org/10.1103/PhysRevApplied.11.054046
Wang B., Teo K. H., Nishino T., Yerazunis W., Barnwell J., Zhang J. - Experiments on wireless power transfer with metamaterials, Appl. Phys. Lett. 98 (2011) 1-4. https:// doi.org/10.1063/1.3601927. DOI: https://doi.org/10.1063/1.3601927
Wu Q., Li Y. H., Gao N., Yang F., Chen Y. Q., Fang K., Zhang Y. W., Chen H. - Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms, EPL (Europhysics Lett. 109 (2015) 1-6. https://doi.org /10.1209/0295-5075/109/68005. DOI: https://doi.org/10.1209/0295-5075/109/68005
Rodríguez E. S. G., RamRakhyani A. K., Schurig D., Lazzi G. - Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement, IEEE Trans. Microw. Theory Tech. 64 (2016) 1644-1654. https://doi.org/10.1109/ TMTT.2016.2549526. DOI: https://doi.org/10.1109/TMTT.2016.2549526
Chen J., Ding Z., Hu Z., Wang S., Cheng Y., Liu M., Wei B., Wang S. - Metamaterial-based high-efficiency wireless power transfer system at 13.56 Mhz for low power applications, Prog. Electromagn. Res. B. 72 (2017) 17-30. DOI: https://doi.org/10.2528/PIERB16071509
Zeng Y., Lu C., Rong C., Tao X., Liu X., Liu R., Liu M. - Analysis and design of asymmetric mid-range wireless power transfer system with metamaterials, Energies. 14 (2021) 1-10. https://doi.org/10.3390/en14051348. DOI: https://doi.org/10.3390/en14051348
Brizi D., Fontana N., Barmada S., Monorchio A. - An accurate equivalent circuit model of metasurface-based wireless power transfer systems, IEEE Open J. Antennas Propag. 1 (2020) 549-559. https://doi.org/10.1109/OJAP.2020.3028297. DOI: https://doi.org/10.1109/OJAP.2020.3028297
Brizi D., Stang J. P., Monorchio A., Lazzi G. - A compact magnetically dispersive surface for low-frequency wireless power transfer applications, IEEE Trans. Antennas Propag. 68 (2020) 1887-1895. https://doi.org/10.1109/TAP.2020.2967320. DOI: https://doi.org/10.1109/TAP.2020.2967320
Correa D. C., Resende U. C., Bicalho F. S. - Experiments with a compact wireless power transfer system using strongly coupled magnetic resonance and metamaterials, IEEE Trans. Magn. 55 (2019) 8401904. https://doi.org/10.1109/TMAG.2019.2913767. DOI: https://doi.org/10.1109/TMAG.2019.2913767
Pham T. S., Khuyen B. X., Tung B. S., Hoang T. T., Pham V. D., Ngo Q. M., Lam V. D. - Enhanced efficiency of asymmetric wireless power transmission using defects in 2D magnetic metamaterials, J. Electron. Mater. 50 (2021) 443-449. https://doi.org/ 10.1007/s11664-020-08586-w. DOI: https://doi.org/10.1007/s11664-020-08586-w
Duong T. P., Lee J. W. - A dynamically adaptable impedance-matching system for midrange wireless power transfer with misalignment, Energies. 2015 (2015) 7593-7617. https://doi.org/10.3390/en8087593. DOI: https://doi.org/10.3390/en8087593
Ranaweera A. L. A. K., Moscoso C. A., Lee J. W. - Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment, J. Phys. D. Appl. Phys. 48 (2015) 1-8. https://doi.org/10.1088/0022-3727/48/45/455104. DOI: https://doi.org/10.1088/0022-3727/48/45/455104
Wang S., Jiang C., Tao X., Chen F., Rong C., Lu C., Zeng Y., Liu X., Liu R., Wei B., Liu M. - Enhancing the stability of medium range and misalignment wireless power transfer system by negative magnetic metamaterials, Materials (Basel). 13 (2020) 1-11. https://doi.org/10.3390/ma13245695. DOI: https://doi.org/10.3390/ma13245695
Lee W., Yoon Y. K. - Tunable metamaterial slab for efficiency improvement in misaligned wireless power transfer, IEEE Microw. Wirel. Components Lett. 30 (2020) 912-915. https://doi.org/10.1109/LMWC.2020.3015680. DOI: https://doi.org/10.1109/LMWC.2020.3015680
Kim J., Kim J., Kong S., Kim H., Suh I. S., Suh N. P., Cho D. H., Kim J., Ahn S. - Coil design and shielding methods for a magnetic resonant wireless power transfer system, Proc. IEEE. 101 (2013) 1332-1342. https://doi.org/10.1109/JPROC.2013.2247551. DOI: https://doi.org/10.1109/JPROC.2013.2247551
Lipworth G., Ensworth J., Seetharam K., Lee J. S., Schmalenberg P., Nomura T., Reynolds M. S., Smith D. R., Urzhumov Y. - Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials, Sci. Rep. 5 (2015) 1-8. https://doi.org/ 10.1038/srep12764. DOI: https://doi.org/10.1038/srep12764
Lu C., Huang X., Rong C., Hu Z., Chen J., Tao X., Wang S., Wei B., Liu M. - Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial, J. Eng. 2019 (2019) 1812-1815. https://digital-library.theiet.org/content/ journals/10.1049/joe.2018.8678. DOI: https://doi.org/10.1049/joe.2018.8678
Markvart A., Song M., Glybovski S., Belov P., Simovski C., Kapitanova P. - Metasurface for near-field wireless power transfer with reduced electric field leakage, IEEE Access. 8 (2020) 40224-40231. https://doi.org/10.1109/ACCESS.2020.2976755. DOI: https://doi.org/10.1109/ACCESS.2020.2976755
Pham T. S., Ranaweera A. K., Lam V. D., Lee J. W. - Experiments on localized wireless power transmission using a magneto-inductive wave two-dimensional metamaterial cavity, Appl. Phys. Express. 9 (2016) 1-4. https://doi.org/10.7567/APEX.9.044101. DOI: https://doi.org/10.7567/APEX.9.044101
Bui H. N., Pham T. S., Ngo V., Lee J. W. - Investigation of various cavity configurations for metamaterial-enhanced field-localizing wireless power transfer, J. Appl. Phys. 122 (2017) 1-10. https://doi.org/10.1063/1.5001130. DOI: https://doi.org/10.1063/1.5001130
Bui H. N., Pham T. S., Kim J. S., Lee J. W. - Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot, J. Magn. Magn. Mater. 494 (2020) 1-13. https://doi.org/10.1016/ j.jmmm.2019.165778. DOI: https://doi.org/10.1016/j.jmmm.2019.165778
Bui H. N., Pham T. S., Lee J. W. - Active switching control of field-localized waveguide using time-modulated non-reciprocal reconfigurable metasurface, Results Phys. 27 (2021) 1-9. https://doi.org/https://doi.org/10.1016/j.rinp.2021.104467. DOI: https://doi.org/10.1016/j.rinp.2021.104467
Pham T. S., Ranaweera A. K., Ngo D. V., Lee J. W. - Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer, J. Phys. D. Appl. Phys. 50 (2017) 1-10. https://doi.org/10.1088/1361-6463/aa7988. DOI: https://doi.org/10.1088/1361-6463/aa7988
Ranaweera A. L. A. K., Pham T. S., Bui H. N., Ngo V., Lee J. W. - An active metasurface for field-localizing wireless power transfer using dynamically reconfigurable cavities, Sci. Rep. 9 (2019) 1-12. https://doi.org/10.1038/s41598-019-48253-7. DOI: https://doi.org/10.1038/s41598-019-48253-7
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.