A critical review on wireless power transfer systems using metamaterials





Wireless power transfers, metamaterials, negative permeability, evanescent wave


Recently, wireless power transfer (WPT) has been a topic of interest due to its attractive applications in modern life. Starting from Tesla’s idea about a century ago, WPT has developed tremendously and appeared in many of the most modern electronic devices. However, some WPT systems still have limitations such as short transmission distance, low transfer efficiency, and electromagnetic leakage. Magnetic metamaterial (MM) is a potential candidate that can overcome the above disadvantages of WPT. This paper is intended to present an overview of recent advances and research progress on WPT systems. Three classes of WPT consisting of short-range, mid-range, and long-range, will be analyzed in detail both in terms of fundamentals and applications. Especially, MM configurations can be used to enhance the near-field WPT efficiency and reduce the leakage of electromagnetic field will also be evaluated. This article is expected to provide a comprehensive review of the mechanism and applications as well as the future development of metamaterial-based WPT systems.


Download data is not yet available.


Song M, Jayathurathnage P., Zanganeh E., Krasikova M., Smirnov P., Belov P., Kapitanova P., Simovski C., Tretyakov S., Krasnok A. - Wireless power transfer based on novel physical concepts, Nat. Electron. 4 (2021) 707-716. https://doi.org/10.1038/s41928-021-00658-x.

Song M., Belov P., Kapitanova P. - Wireless power transfer inspired by the modern trends in electromagnetics, Appl. Phys. Rev. 4 (2017) 1-19. https://doi.org/10.1063/1.4981396.

Shinohara N. - Power without wires, IEEE Microw. Mag. 12 (2011) S64-S73. https://doi.org/10.1109/MMM.2011.942732.

Tesla N. - Apparatus for transmitting electrical energy, 1119732, 1914.

Brown W. C. - Adapting microwave techniques to help solve future energy problems, IEEE Trans. Microw. Theory Tech. MTT-21 (1973) 753-763. https://doi.org/10.1109/GMTT.1973.1123144.

Matsumoto H. - Research on solar power satellites and microwave power transmission in Japan, IEEE Microw. Mag. 3 (2002) 36–45. https://doi.org/10.1109/MMW.2002.1145674.

Kesler M. - Highly resonant wireless power transfer: safe, efficient, and over distance, 2013. http://www.witricity.com/pdfs/highly-resonant-power-transfer-kesler-witricity-2013.pdf.

Hui S. Y. - Planar wireless charging technology for portable electronic products and Qi, Proc. IEEE. 101 (2013) 1290-1301. https://doi.org/10.1109/JPROC.2013.2246531.

Mayordomo I., Drager T., Spies P., Bernhard J., Pflaum A. - An overview of technical challenges and advances of inductive wireless power transmission, Proc. IEEE. 101 (2013) 1302-1311. https://doi.org/10.1109/JPROC.2013.2243691.

Ha-Van N., Le-Huu H., Le M. T., Park K., Seo C. - Free-positioning wireless power transfer using a 3D transmitting coil for portable devices, J. Electromagn Eng Sci. 20 (2020) 270-276. https://doi.org/10.26866/jees.2020.20.4.270.

Park J., Park C., Shin Y., Kim D., Park B., Cho J., Choi J., Ahn S. - Planar multiresonance reactive shield for reducing electromagnetic interference in portable wireless power charging application, Appl. Phys. Lett. 114 (2019). https://doi.org/10.1063/1.5097038.

Alhamrouni I., Iskandar M., Salem M., Awalin L. J., Jusoh A., Sutikno T. - Application of inductive coupling for wireless power transfer, Int. J. Power Electron. Drive Syst. 11 (2020) 1109-1116.

Zhou H., Zhu B., Hu W., Liu Z., Gao X. - Modelling and practical implementation of 2-Coil wireless power transfer systems, J. Electr. Comput. Eng. 2014 (2014) 1-8. https://doi.org/10.1155/2014/906537.

Lee W. S., Oh K.-S., Yu J. W. - Distance-insensitive wireless power transfer and near-field communication using a current-controlled loop with a loaded capacitance, IEEE Trans. Antennas Propag. 62 (2014) 936-940. https://doi.org/10.1109/TAP.2013.2290549.

Wei X., Wang Z., Dai H. - A critical review of wireless power transfer via strongly coupled magnetic resonances, Energies. 7 (2014) 4316-4341. https://doi.org/10.3390 /en7074316.

Bevacqua M. T., Bellizzi G. G., Merenda M. - An efficient far-field wireless power transfer via field intensity shaping techniques, Electronics. 10 (2021) 1-13. https://doi.org/10.3390/electronics10141609.

Brown W. C., Eves E. E. - Beamed microwave power transmission and its application to space, IEEE Trans. Microw. Theory Tech. 40 (1992) 1239-1250. https://doi.org/10.1109 /22.141357.

Lerosey G. - Wireless power on the move, Nature. 546 (2017) 354-355. https://doi.org/ 10.1038/546354a.

Moon S., Moon G. - Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers, IEEE Trans. Power Electron. 31 (2016) 6844-6854. https://doi.org/10.1109/TPEL.2015.2506779.

Liu Z., Zhong Z., Guo Y. X. - Rapid design approach of optimal efficiency magnetic resonant wireless power transfer system, Electron. Lett. 52 (2016) 314-315. https://doi.org/https://doi.org/10.1049/el.2015.3571.

Pokharel R. K., Barakat A., Alshhawy S., Yoshitomi K., Sarris C. - Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications, Sci. Rep. 11 (2021) 1-10. https://doi.org/ 10.1038/s41598-021-84333-3.

Pham T. S., Nguyen T. D., Tung B. S., Khuyen B. X., Hoang T. T., Ngo Q. M., Hiep L. T. H., Lam V. D. - Optimal frequency for magnetic resonant wireless power transfer in conducting medium, Sci. Rep. 11 (2021) 1-11. https://doi.org/10.1038/s41598-021-98153-y.

Xu D., Zhang Q., Li X. - Implantable magnetic resonance wireless power transfer system based on 3D flexible coils, Sustainability. 12 (2020) 4149. https://doi.org/10.3390/ su12104149.

Assawaworrarit S., Yu X., Fan S. - Robust wireless power transfer using a nonlinear parity-time-symmetric circuit, Nature. 546 (2017) 387-390. https://doi.org/10.1038/ nature22404.

Choi J. H., Kang S. H., Jung C. W. - Magnetic resonant wireless power transfer with L-shape arranged resonators for laptop computer, J. Electromagn. Eng. Sci. 17 (2017) 126-132. https://doi.org/10.5515/JKIEES.2017.17.3.126.

Kurs A., Karalis A., Moffatt R., Joannopoulos J. D., Fisher P., Soljačić M. - Wireless power transfer via strongly coupled magnetic resonances, Science 317 (2007) 83-86. https://doi.org/10.1126/science.1143254.

Roberts D. M., Clements A. P., McDonald R., Bobowski J. S., Johnson T. - Mid-range wireless power transfer at 100 MHz using magnetically coupled loop-gap resonators, IEEE Trans. Microw. Theory Tech. 69 (2021) 3510-3527. https://doi.org/10.1109/ TMTT.2021.3073133.

Shi L., Rasool N., Zhu H., Huang K., Yang Y. - Design and experiment of a reconfigurable magnetic resonance coupling wireless power transmission system, IEEE Microw. Wirel. Components Lett. 30 (2020) 705-708. https://doi.org/10.1109/LMWC.2020.2997068.

Mollaei M. S. M., Jayathurathnage P., Tretyakov S. A., Simovski C. R. - High-impedance wireless power transfer transmitter coils for freely positioning receivers, IEEE Access. 9 (2021) 42994-43000. https://doi.org/10.1109/ACCESS.2021.3064212.

Huang X., Zhang C., Cong L., Cai R., Yang F., Lu C. - Development and prospects of metamaterial in wireless power transfer, IET Power Electron. 14 (2021) 2423-2440. https://doi.org/https://doi.org/10.1049/pel2.12189.

Lee W., Yoon Y. K. - Wireless power transfer systems using metamaterials: A review, IEEE Access. 8 (2020) 147930-147947. https://doi.org/10.1109/ACCESS.2020.3015176.

Kung M. L., Lin K. H. - Investigation of multi-layer metamaterial for enhancing efficiency of near-field wireless power transfer systems, in: 2018 Prog. Electromagn. Res. Symp., 2018: pp. 2484-2488. https://doi.org/10.23919/PIERS.2018.8597730.

Sun K., Fan R., Zhang X., Zhang Z., Shi Z., Wang N., Xie P., Wang Z., Fan G., Liu H., Liu C., Li T., Yan C., Guo Z. - An overview of metamaterials and their achievements in wireless power transfer, J. Mater. Chem. C. 6 (2018) 2925-2943. https://doi.org/10.1039 /C7TC03384B.

Das R., Basir A., Yoo H. - A metamaterial-coupled wireless power transfer system based on cubic high-dielectric resonators, IEEE Trans. Ind. Electron. 66 (2019) 7397-7406. https://doi.org/10.1109/TIE.2018.2879310.

Rong C., Lu C., Zeng Y., Tao X., Liu X., Liu R., He X., Liu M. - A critical review of metamaterial in wireless power transfer system, IET Power Electron. 14 (2021) 1541-1559. https://doi.org/https://doi.org/10.1049/pel2.12099.

Mi C. C., Buja G., Choi S. Y., Rim C. T. - Modern advances in wireless power transfer systems for roadway powered electric vehicles, IEEE Trans. Ind. Electron. 63 (2016) 6533-6545. https://doi.org/10.1109/TIE.2016.2574993.

Garnica J., Chinga R. A., Lin J. - Wireless power transmission: From far field to near field, Proc. IEEE. 101 (2013) 1321-1331. https://doi.org/10.1109/JPROC.2013.2251411.

Lin J. C. - Space solar-power stations, wireless power transmissions, and biological implications, IEEE Microw. Mag. 3 (2002) 36–42. https://doi.org/10.1109/6668.990673.

Hui S. Y. R., Zhong W., Lee C. K. - A critical review of recent progress in mid-range wireless power transfer, IEEE Trans. Power Electron. 29 (2014) 4500-4511. https://doi.org/10.1109/TPEL.2013.2249670.

Khan H., Ali S. A., Wajid M., Alam M. S. - Antenna array design on flexible substrate for wireless power transfer, Front. Eng. Built Environ. 1 (2021) 55-67. https://doi.org/10.1108/FEBE-03-2021-0018.

Xia M., Aïssa S. - On the efficiency of far-field wireless power transfer, IEEE Trans. Signal Process. 63 (2015) 2835-2847. https://doi.org/10.1109/TSP.2015.2417497.

Zhang Z., Pang H., Georgiadis A., Cecati C. - Wireless power transfer - an overview, IEEE Trans. Ind. Electron. 66 (2019) 1044-1058. https://doi.org/10.1109/TIE.2018. 2835378.

Ali A., Yasin M. N. M., Husin M. F. C., Hambali N. A. M. A. - Design and analysis of 2-coil wireless power transfer (WPT) using magnetic coupling technique, Int. J. Power Electron. Drive Syst. 10 (2019) 611-616.

Alrawashdeh R. - A review on wireless power transfer in free space and conducting lossy media, Jordanian J. Comput. Inf. Technol. 03 (2017) 71-88. https://doi.org/10.5455/ jjcit.71-1483030287.

Younesiraad H., Bemani M. - Analysis of coupling between magnetic dipoles enhanced by metasurfaces for wireless power transfer efficiency improvement, Sci. Rep. 8 (2018) 1-11. https://doi.org/10.1038/s41598-018-33174-8.

Chu S., Stevens C. J., Shamonina E. - Wireless power transfer in attenuating media, AIP Adv. 11 (2021) 1-7. https://doi.org/10.1063/5.0059932.

Seo D. W., Lee J. H., Lee H. - Study on two-coil and four-coil wireless power transfer system using Z-parameter approach, ETRI J. 38 (2016) 568-578. https://doi.org/10.4218 /etrij.16.0115.0692.

Houran M. A., Yang X., Chen W. - Magnetically coupled resonance WPT: review of compensation topologies, resonator structures with misalignment, and EMI diagnostics, Electronics. 7 (2018) 1-45. https://doi.org/10.3390/electronics7110296.

Zhang X., Meng H., Wei B., Wang S., Yang Q. - An improved three-coil wireless power link to increase spacing distance and power for magnetic resonant coupling system, EURASIP J. Wirel. Commun. Netw. 2018 (2018) 1-8. https://doi.org/10.1186/s13638-018-1148-8.

Pham T. S., Nguyen T. V., Nguyen D. K., Ha T. K. D. - Investigation on coil misalignment affect magnetic resonant wireless power transfer system, Journal of Military Science and Technology. 75 (2021) 57-64. (in Vietnamese).

Kim D., Kim J., Park Y. - Optimization and design of small circular coils in a magnetically coupled wireless power transfer system in the megahertz frequency, IEEE Trans. Microw. Theory Tech. 64 (2016) 2652-2663. https://doi.org/10.1109/ TMTT.2016.2582874.

Kang S. H., Nguyen V. T., Jung C. W. - Analysis of MR-WPT using planar textile resonators for wearable applications, IET Microwaves, Antennas Propag. 10 (2016) 1541-1546. https://doi.org/https://doi.org/10.1049/iet-map.2016.0024.

Liu X., Wang G. - A novel wireless power transfer system with double intermediate resonant coils, IEEE Trans. Ind. Electron. 63 (2016) 2174-2180. https://doi.org/ 10.1109/TIE.2015.2510512.

Zhang Y., Zhao Z. - Frequency splitting analysis of two-coil resonant wireless power transfer, IEEE Antennas Wirel. Propag. Lett. 13 (2014) 400-402. https://doi.org/10.1109/LAWP.2014.2307924.

Ishizaki T., Komori T., Ishida T., Awai I. - Comparative study of coil resonators for wireless power transfer system in terms of transfer loss, IEICE Electron. Express. 7 (2010) 785-790. https://doi.org/10.1587/elex.7.785.

Kang S. H., Park S., Jung C. W. - Textile resonators using a sintered metal conductor for wearable MR-WPT with high efficiency and wearability, Microw. Opt. Technol. Lett. 59 (2017) 668-672. https://doi.org/https://doi.org/10.1002/mop.30363.

Sample A. P., Meyer D. T., Smith J. R. - Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Trans. Ind. Electron. 58 (2011) 544-554. https://doi.org/10.1109/TIE.2010.2046002.

Sample A. P., Waters B. H., Wisdom S. T., Smith J. R. - Enabling seamless wireless power delivery in dynamic environments, Proc. IEEE. 101 (2013) 1343-1358. https://doi.org/10.1109/JPROC.2013.2252453.

Veselago V. G. - The electrodynamics of substances with simultaneously negative values of epsilon and mu, Sov. Phys. Uspekhi. 10 (1968) 509-514. https://doi.org/ 10.1070/pu1968v010n04abeh003699.

Pendry J. B., Holden A. J., Stewart W. J., Youngs I. - Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 (1996) 4773-4776.

Pendry J. B., Holden A. J., Robbins D. J., Stewart W. J. - Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. 47 (1999) 2075-2084. https://doi.org/10.1109/22.798002.

Rao S., Ong K. - Amplification of evanescent waves in a lossy left-handed material slab, Phys. Rev. B - Condens. Matter Mater. Phys. 68 (2003) 1-4. https://doi.org/10.1103 /PhysRevB.68.113103.

Smith D. R., Padilla W. J., Vier D. C., Nemat-Nasser S. C., Schultz S. - Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184-4187. https://doi.org/10.1103/PhysRevLett.84.4184.

Pendry J. B. - Negative refraction, Contemp. Phys. 45 (2004) 191-202. https://doi.org/ 10.1080/00107510410001667434.

Nguyen H. T., Bui T. S., Yan S., Vandenbosch G. A. E., Lievens P., Vu L. D., E. Janssens - Broadband negative refractive index obtained by plasmonic hybridization in metamaterials, Appl. Phys. Lett. 109 (2016) 1-5. https://doi.org/10.1063/1.4968802.

Tung B. S., Khuyen B. X., Linh P. T., Tung N. T., Manh D. H., Lam V. D. - Polarization-insensitive electromagnetically-induced transparency in planar metamaterial based on coupling of ring and zigzag spiral resonators, Mod. Phys. Lett. B. 34 (2020) 2050093. https://doi.org/10.1142/S0217984920500931.

Almoneef T. S., Ramahi O. M. - Metamaterial electromagnetic energy harvester with near unity efficiency, Appl. Phys. Lett. 106 (2015) 1-4. https://doi.org/10.1063/1.4916232.

Khuyen B. X., Tung B. S., Dung N. V., Yoo Y. J., Kim Y. J., Kim K. W., Lam V. D., Yang J. G., Lee Y. - Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization, J. Appl. Phys. 117 (2015) 1-7. https://doi.org/10.1063/ 1.4923053.

Tiep D. H., Khuyen B. X., Tung B. S., Kim Y. J., Hwang J. S., Lam V. D., Lee Y. P. - Enhanced-bandwidth perfect absorption based on a hybrid metamaterial, Opt. Mater. Express. 8 (2018) 2751-2759. https://doi.org/10.1364/OME.8.002751.

Khuyen B. X., Tung B. S., Yoo Y. J., Kim Y. J., Kim K. W., Chen L. Y., Lam V. D., Lee Y. - Miniaturization for ultrathin metamaterial perfect absorber in the VHF band, Sci. Rep. 7 (2017) 1-7. https://doi.org/10.1038/srep45151.

Ha D. T., Tung B. S., Khuyen B. X., Pham T. S., Tung N. T., Tung N. H., Hoa N. T., Lam V. D., Zheng H., Chen L., Lee Y. - Dual-band, polarization-insensitive, ultrathin and flexible metamaterial absorber based on high-order magnetic resonance, Photonics 8 (2021) 574. https://doi.org/10.3390/photonics8120574.

Long L. V., Khiem N. S., Tung B. S., Tung N. T., Giang T. T., Son P. T., Khuyen B. X., Lam V. D., Chen L., Zheng H., Lee Y. - Flexible broadband metamaterial perfect absorber based on graphene-conductive inks, Photonics. 8 (2021) 440. https://doi.org/10.3390/ photonics8100440.

Singh G., Ni R., Marwaha A. - A review of metamaterials and its applications, Int. J. Eng. Trends Technol. 19 (2015) 305-310. https://doi.org/10.14445/22315381/ijett-v19p254.

Bui T. S., Dao T. D., Dang L. H., Vu L. D., Ohi A., Nabatame T., Lee Y., Nagao T., Hoang C. V. - Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules, Sci. Rep. 6 (2016) 1-7. https://doi.org/10.1038/srep32123.

Ha D. T., Dzung N. D., Ngoc N. V., Tung B. S., Pham T. S., Lee Y., Chen L. Y., Khuyen B. X., Lam V. D. - Switching between perfect absorption and polarization conversion, based on hybrid metamaterial in the GHz and THz bands, J. Phys. D. Appl. Phys. 54 (2021) 1-10. https://doi.org/10.1088/1361-6463/abeb97.

Nguyen T. H., Bui S. T., Nguyen X. C., Vu D. L., Bui X. K. - Tunable broadband-negative-permeability metamaterials by hybridization at THz frequencies, RSC Adv. 10 (2020) 28343-28350. https://doi.org/10.1039/D0RA04612D.

Radkovskaya A., Petrov P., Kiriushechkina S., Satskiy A., Ivanyukovich M., Vakulenko A., Prudnikov V., Kotelnikova O., Korolev A., Zakharov P. - Magnetic metamaterials: Coupling and permeability, J. Magn. Magn. Mater. 459 (2018) 187-190. https://doi.org/10.1016/j.jmmm.2017.11.031.

Zhang Y., Tang H., Yao C., Li Y., Xiao S. - Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission, AIP Adv. 5 (2015) 1-9. https://doi.org/10.1063/1.4907043.

Smith D. R., Schultz S., Markoš P., Soukoulis C. M. - Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B. 65 (2002) 1-5. https://doi.org/10.1103/PhysRevB.65.195104.

Smith D. R., Vier D. C., Koschny T., Soukoulis C. M. - Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E. 71 (2005) 1-11. https: //doi.org/10.1103/PhysRevE.71.036617.

Rothwell E. J., Frasch J. L., Ellison S. M., Chahal P., Ouedraogo R. O. - Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials, Prog. Electromagn. Res. 157 (2016) 31-47. https://doi.org/ 10.2528/PIER16071706.

Chen X., Grzegorczyk T. M., Wu B. I., Pacheco J., Kong J. A. - Robust method to retrieve the constitutive effective parameters of metamaterials, Phys. Rev. E. 70 (2004) 1-7. https://doi.org/10.1103/PhysRevE.70.016608.

Pham T. S., Nguyen T. D., Vu D. L. - Metamaterials for improving efficiency of magnetic resonant wireless power transfer applications, Commun. Phys. 32 (2022) 1-8.

Ranaweera A. L. A. K., Duong T. P., Lee J. W. - Experimental investigation of compact metamaterial for high efficiency mid-range wireless power transfer applications, J. Appl. Phys. 116 (2014) 1-8. https://doi.org/10.1063/1.4891715.

Harris W. C., Stancil D. D., Ricketts D. S. - Improved wireless power transfer efficiency with non-perfect lenses, Appl. Phys. Lett. 114 (2019) 1-4. https://doi.org/ 10.1063/1.5081629.

Zhao Y. - Evanescent wave amplification and subwavelength imaging by ultrathin uniaxial μ-near-zero material, AIP Adv. 4 (2014) 1-6. https://doi.org/10.1063/1.4866579.

Lee W., Yoon Y. K. - Rollable metamaterial screen for magnetic resonance coupling-based high-efficiency wireless power transfer, Int. J. Microw. Wirel. Technol. 13 (2021) 365-373. https://doi.org/DOI: 10.1017/S1759078720001221.

Shamonina E., Kalinin V. A., Ringhofer K. H., Solymar L. - Magneto-inductive waveguide, Electron. Lett. 38 (2002) 371-373. https://doi.org/10.1049/el:20020258.

Chu S., Luloff M. S., Yan J., Petrov P., Stevens C. J., Shamonina E. - Magnetoinductive waves in attenuating media, Sci. Rep. 11 (2021) 1-12. https://doi.org/10.1038/s41598-021-85838-7.

Sandoval F. S., Delgado S. M. T., Moazenzadeh A., Wallrabe U. - A 2-D magnetoinductive wave device for freer wireless power transfer, IEEE Trans. Power Electron. 34 (2019) 10433-10445. https://doi.org/10.1109/TPEL.2019.2904875.

Shamonina E., Kalinin V. A., Ringhofer K .H., Solymar L. - Magnetoinductive waves in one, two, three dimensions, J. Appl. Phys. 92 (2002) 6252-6261. https://doi.org/ 10.1063/1.1510945.

Yang F., Song J., Guo Z., Wu X., Zhu K., Jiang J., Sun Y., Jiang H., Li Y., Chen H. - Actively controlled asymmetric edge states for directional wireless power transfer, Opt. Express. 29 (2021) 7844-7857. https://doi.org/10.1364/OE.417887.

Song J., Yang F., Guo Z., Wu X., Zhu K., Jiang J., Sun Y., Li Y., Jiang H., Chen H. - Wireless power transfer via topological modes in dimer chains, Phys. Rev. Appl. 15 (2021) 1-13. https://doi.org/10.1103/PhysRevApplied.15.014009.

Feis J., Stevens C. J., Shamonina E. - Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms, Appl. Phys. Lett. 117 (2020) 1-6. https://doi.org/10.1063/5.0024077.

Syms R. R. A., Shamonina E., Solymar L. - Positive and negative refraction of magnetoinductive waves in two dimensions, Eur. Phys. J. B. Condens. Matter Complex Syst. 46 (2005) 301-308. https://doi.org/10.1140/epjb/e2005-00253-9.

Pham T. S., Bui H. N., Lee J. W. - Wave propagation control and switching for wireless power transfer using tunable 2-D magnetic metamaterials, J. Magn. Magn. Mater. 485 (2019) 126-135. https://doi.org/10.1016/j.jmmm.2019.04.034.

Sydoruk O., Zhuromskyy O., Shamonina E., Solymar L. - Phonon-like dispersion curves of magnetoinductive waves, Appl. Phys. Lett. 87 (2005) 1-3. https://doi.org/ 10.1063/1.2011789.

Younesiraad H., Bemani M., Matekovits L. - Optimal Huygens’ metasurface for wireless power transfer efficiency improvement, IEEE Access. 8 (2020) 216409-216418. https://doi.org/10.1109/ACCESS.2020.3041337.

Rong C., Tao X., Lu C., Hu Z., Huang X., Zeng Y., Liu M. - Analysis and optimized design of metamaterials for mid-range wireless power transfer using a class-E RF power amplifier, Appl. Sci. 9 (2019) 1-14. https://doi.org/10.3390/app9010026.

Song M., Baryshnikova K., Markvart A., Belov P., Nenasheva E., Simovski C., Kapitanova P. - Smart table based on a metasurface for wireless power transfer, Phys. Rev. Appl. 11 (2019) 1-9. https://doi.org/10.1103/PhysRevApplied.11.054046.

Wang B., Teo K. H., Nishino T., Yerazunis W., Barnwell J., Zhang J. - Experiments on wireless power transfer with metamaterials, Appl. Phys. Lett. 98 (2011) 1-4. https:// doi.org/10.1063/1.3601927.

Wu Q., Li Y. H., Gao N., Yang F., Chen Y. Q., Fang K., Zhang Y. W., Chen H. - Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms, EPL (Europhysics Lett. 109 (2015) 1-6. https://doi.org /10.1209/0295-5075/109/68005.

Rodríguez E. S. G., RamRakhyani A. K., Schurig D., Lazzi G. - Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement, IEEE Trans. Microw. Theory Tech. 64 (2016) 1644-1654. https://doi.org/10.1109/ TMTT.2016.2549526.

Chen J., Ding Z., Hu Z., Wang S., Cheng Y., Liu M., Wei B., Wang S. - Metamaterial-based high-efficiency wireless power transfer system at 13.56 Mhz for low power applications, Prog. Electromagn. Res. B. 72 (2017) 17-30.

Zeng Y., Lu C., Rong C., Tao X., Liu X., Liu R., Liu M. - Analysis and design of asymmetric mid-range wireless power transfer system with metamaterials, Energies. 14 (2021) 1-10. https://doi.org/10.3390/en14051348.

Brizi D., Fontana N., Barmada S., Monorchio A. - An accurate equivalent circuit model of metasurface-based wireless power transfer systems, IEEE Open J. Antennas Propag. 1 (2020) 549-559. https://doi.org/10.1109/OJAP.2020.3028297.

Brizi D., Stang J. P., Monorchio A., Lazzi G. - A compact magnetically dispersive surface for low-frequency wireless power transfer applications, IEEE Trans. Antennas Propag. 68 (2020) 1887-1895. https://doi.org/10.1109/TAP.2020.2967320.

Correa D. C., Resende U. C., Bicalho F. S. - Experiments with a compact wireless power transfer system using strongly coupled magnetic resonance and metamaterials, IEEE Trans. Magn. 55 (2019) 8401904. https://doi.org/10.1109/TMAG.2019.2913767.

Pham T. S., Khuyen B. X., Tung B. S., Hoang T. T., Pham V. D., Ngo Q. M., Lam V. D. - Enhanced efficiency of asymmetric wireless power transmission using defects in 2D magnetic metamaterials, J. Electron. Mater. 50 (2021) 443-449. https://doi.org/ 10.1007/s11664-020-08586-w.

Duong T. P., Lee J. W. - A dynamically adaptable impedance-matching system for midrange wireless power transfer with misalignment, Energies. 2015 (2015) 7593-7617. https://doi.org/10.3390/en8087593.

Ranaweera A. L. A. K., Moscoso C. A., Lee J. W. - Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment, J. Phys. D. Appl. Phys. 48 (2015) 1-8. https://doi.org/10.1088/0022-3727/48/45/455104.

Wang S., Jiang C., Tao X., Chen F., Rong C., Lu C., Zeng Y., Liu X., Liu R., Wei B., Liu M. - Enhancing the stability of medium range and misalignment wireless power transfer system by negative magnetic metamaterials, Materials (Basel). 13 (2020) 1-11. https://doi.org/10.3390/ma13245695.

Lee W., Yoon Y. K. - Tunable metamaterial slab for efficiency improvement in misaligned wireless power transfer, IEEE Microw. Wirel. Components Lett. 30 (2020) 912-915. https://doi.org/10.1109/LMWC.2020.3015680.

Kim J., Kim J., Kong S., Kim H., Suh I. S., Suh N. P., Cho D. H., Kim J., Ahn S. - Coil design and shielding methods for a magnetic resonant wireless power transfer system, Proc. IEEE. 101 (2013) 1332-1342. https://doi.org/10.1109/JPROC.2013.2247551.

Lipworth G., Ensworth J., Seetharam K., Lee J. S., Schmalenberg P., Nomura T., Reynolds M. S., Smith D. R., Urzhumov Y. - Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials, Sci. Rep. 5 (2015) 1-8. https://doi.org/ 10.1038/srep12764.

Lu C., Huang X., Rong C., Hu Z., Chen J., Tao X., Wang S., Wei B., Liu M. - Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial, J. Eng. 2019 (2019) 1812-1815. https://digital-library.theiet.org/content/ journals/10.1049/joe.2018.8678.

Markvart A., Song M., Glybovski S., Belov P., Simovski C., Kapitanova P. - Metasurface for near-field wireless power transfer with reduced electric field leakage, IEEE Access. 8 (2020) 40224-40231. https://doi.org/10.1109/ACCESS.2020.2976755.

Pham T. S., Ranaweera A. K., Lam V. D., Lee J. W. - Experiments on localized wireless power transmission using a magneto-inductive wave two-dimensional metamaterial cavity, Appl. Phys. Express. 9 (2016) 1-4. https://doi.org/10.7567/APEX.9.044101.

Bui H. N., Pham T. S., Ngo V., Lee J. W. - Investigation of various cavity configurations for metamaterial-enhanced field-localizing wireless power transfer, J. Appl. Phys. 122 (2017) 1-10. https://doi.org/10.1063/1.5001130.

Bui H. N., Pham T. S., Kim J. S., Lee J. W. - Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot, J. Magn. Magn. Mater. 494 (2020) 1-13. https://doi.org/10.1016/ j.jmmm.2019.165778.

Bui H. N., Pham T. S., Lee J. W. - Active switching control of field-localized waveguide using time-modulated non-reciprocal reconfigurable metasurface, Results Phys. 27 (2021) 1-9. https://doi.org/https://doi.org/10.1016/j.rinp.2021.104467.

Pham T. S., Ranaweera A. K., Ngo D. V., Lee J. W. - Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer, J. Phys. D. Appl. Phys. 50 (2017) 1-10. https://doi.org/10.1088/1361-6463/aa7988.

Ranaweera A. L. A. K., Pham T. S., Bui H. N., Ngo V., Lee J. W. - An active metasurface for field-localizing wireless power transfer using dynamically reconfigurable cavities, Sci. Rep. 9 (2019) 1-12. https://doi.org/10.1038/s41598-019-48253-7.




How to Cite

T. S. Pham, X. K. Bui, S. T. Bui, T. H. H. Le, and D. L. Vu, “A critical review on wireless power transfer systems using metamaterials”, Vietnam J. Sci. Technol., vol. 60, no. 4, pp. 587–613, Aug. 2022.