A critical review on wireless power transfer systems using metamaterials

Pham Thanh Son, Bui Xuan Khuyen, Bui Son Tung, Le Thi Hong Hiep, Vu Dinh Lam
Author affiliations

Authors

  • Pham Thanh Son Institute of Materials Science, Vietnam Academy of Science and Technology, 8 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0002-3608-5929
  • Bui Xuan Khuyen Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Bui Son Tung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Le Thi Hong Hiep Fundamental of Fire Engineering Faculty, University of Fire Prevention and Fighting, 243 Khuat Duy Tien, Thanh Xuan, Ha Noi, Viet Nam
  • Vu Dinh Lam Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16954

Keywords:

Wireless power transfers, metamaterials, negative permeability, evanescent wave

Abstract

Recently, wireless power transfer (WPT) has been a topic of interest due to its attractive applications in modern life. Starting from Tesla’s idea about a century ago, WPT has developed tremendously and appeared in many of the most modern electronic devices. However, some WPT systems still have limitations such as short transmission distance, low transfer efficiency, and electromagnetic leakage. Magnetic metamaterial (MM) is a potential candidate that can overcome the above disadvantages of WPT. This paper is intended to present an overview of recent advances and research progress on WPT systems. Three classes of WPT consisting of short-range, mid-range, and long-range, will be analyzed in detail both in terms of fundamentals and applications. Especially, MM configurations can be used to enhance the near-field WPT efficiency and reduce the leakage of electromagnetic field will also be evaluated. This article is expected to provide a comprehensive review of the mechanism and applications as well as the future development of metamaterial-based WPT systems.

Downloads

Download data is not yet available.

References

Song M, Jayathurathnage P., Zanganeh E., Krasikova M., Smirnov P., Belov P., Kapitanova P., Simovski C., Tretyakov S., Krasnok A. - Wireless power transfer based on novel physical concepts, Nat. Electron. 4 (2021) 707-716. https://doi.org/10.1038/s41928-021-00658-x. DOI: https://doi.org/10.1038/s41928-021-00658-x https://doi.org/10.1038/s41928-021-00658-x.">

Song M., Belov P., Kapitanova P. - Wireless power transfer inspired by the modern trends in electromagnetics, Appl. Phys. Rev. 4 (2017) 1-19. https://doi.org/10.1063/1.4981396. DOI: https://doi.org/10.1063/1.4981396 https://doi.org/10.1063/1.4981396.">

Shinohara N. - Power without wires, IEEE Microw. Mag. 12 (2011) S64-S73. https://doi.org/10.1109/MMM.2011.942732. DOI: https://doi.org/10.1109/MMM.2011.942732 https://doi.org/10.1109/MMM.2011.942732.">

Tesla N. - Apparatus for transmitting electrical energy, 1119732, 1914.

Brown W. C. - Adapting microwave techniques to help solve future energy problems, IEEE Trans. Microw. Theory Tech. MTT-21 (1973) 753-763. https://doi.org/10.1109/GMTT.1973.1123144. DOI: https://doi.org/10.1109/TMTT.1973.1128128 https://doi.org/10.1109/GMTT.1973.1123144.">

Matsumoto H. - Research on solar power satellites and microwave power transmission in Japan, IEEE Microw. Mag. 3 (2002) 36–45. https://doi.org/10.1109/MMW.2002.1145674. DOI: https://doi.org/10.1109/MMW.2002.1145674 https://doi.org/10.1109/MMW.2002.1145674.">

Kesler M. - Highly resonant wireless power transfer: safe, efficient, and over distance, 2013. http://www.witricity.com/pdfs/highly-resonant-power-transfer-kesler-witricity-2013.pdf. http://www.witricity.com/pdfs/highly-resonant-power-transfer-kesler-witricity-2013.pdf.">

Hui S. Y. - Planar wireless charging technology for portable electronic products and Qi, Proc. IEEE. 101 (2013) 1290-1301. https://doi.org/10.1109/JPROC.2013.2246531. DOI: https://doi.org/10.1109/JPROC.2013.2246531 https://doi.org/10.1109/JPROC.2013.2246531.">

Mayordomo I., Drager T., Spies P., Bernhard J., Pflaum A. - An overview of technical challenges and advances of inductive wireless power transmission, Proc. IEEE. 101 (2013) 1302-1311. https://doi.org/10.1109/JPROC.2013.2243691. DOI: https://doi.org/10.1109/JPROC.2013.2243691 https://doi.org/10.1109/JPROC.2013.2243691.">

Ha-Van N., Le-Huu H., Le M. T., Park K., Seo C. - Free-positioning wireless power transfer using a 3D transmitting coil for portable devices, J. Electromagn Eng Sci. 20 (2020) 270-276. https://doi.org/10.26866/jees.2020.20.4.270. DOI: https://doi.org/10.26866/jees.2020.20.4.270 https://doi.org/10.26866/jees.2020.20.4.270.">

Park J., Park C., Shin Y., Kim D., Park B., Cho J., Choi J., Ahn S. - Planar multiresonance reactive shield for reducing electromagnetic interference in portable wireless power charging application, Appl. Phys. Lett. 114 (2019). https://doi.org/10.1063/1.5097038. DOI: https://doi.org/10.1063/1.5097038 https://doi.org/10.1063/1.5097038.">

Alhamrouni I., Iskandar M., Salem M., Awalin L. J., Jusoh A., Sutikno T. - Application of inductive coupling for wireless power transfer, Int. J. Power Electron. Drive Syst. 11 (2020) 1109-1116. DOI: https://doi.org/10.11591/ijpeds.v11.i3.pp1109-1116

Zhou H., Zhu B., Hu W., Liu Z., Gao X. - Modelling and practical implementation of 2-Coil wireless power transfer systems, J. Electr. Comput. Eng. 2014 (2014) 1-8. https://doi.org/10.1155/2014/906537. DOI: https://doi.org/10.1155/2014/906537 https://doi.org/10.1155/2014/906537.">

Lee W. S., Oh K.-S., Yu J. W. - Distance-insensitive wireless power transfer and near-field communication using a current-controlled loop with a loaded capacitance, IEEE Trans. Antennas Propag. 62 (2014) 936-940. https://doi.org/10.1109/TAP.2013.2290549. DOI: https://doi.org/10.1109/TAP.2013.2290549 https://doi.org/10.1109/TAP.2013.2290549.">

Wei X., Wang Z., Dai H. - A critical review of wireless power transfer via strongly coupled magnetic resonances, Energies. 7 (2014) 4316-4341. https://doi.org/10.3390 /en7074316. DOI: https://doi.org/10.3390/en7074316 https://doi.org/10.3390 /en7074316.">

Bevacqua M. T., Bellizzi G. G., Merenda M. - An efficient far-field wireless power transfer via field intensity shaping techniques, Electronics. 10 (2021) 1-13. https://doi.org/10.3390/electronics10141609. DOI: https://doi.org/10.3390/electronics10141609 https://doi.org/10.3390/electronics10141609.">

Brown W. C., Eves E. E. - Beamed microwave power transmission and its application to space, IEEE Trans. Microw. Theory Tech. 40 (1992) 1239-1250. https://doi.org/10.1109 /22.141357. DOI: https://doi.org/10.1109/22.141357 https://doi.org/10.1109 /22.141357.">

Lerosey G. - Wireless power on the move, Nature. 546 (2017) 354-355. https://doi.org/ 10.1038/546354a. DOI: https://doi.org/10.1038/546354a https://doi.org/ 10.1038/546354a.">

Moon S., Moon G. - Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers, IEEE Trans. Power Electron. 31 (2016) 6844-6854. https://doi.org/10.1109/TPEL.2015.2506779. DOI: https://doi.org/10.1109/TPEL.2015.2506779 https://doi.org/10.1109/TPEL.2015.2506779.">

Liu Z., Zhong Z., Guo Y. X. - Rapid design approach of optimal efficiency magnetic resonant wireless power transfer system, Electron. Lett. 52 (2016) 314-315. https://doi.org/https://doi.org/10.1049/el.2015.3571. DOI: https://doi.org/10.1049/el.2015.3571 https://doi.org/https://doi.org/10.1049/el.2015.3571.">

Pokharel R. K., Barakat A., Alshhawy S., Yoshitomi K., Sarris C. - Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications, Sci. Rep. 11 (2021) 1-10. https://doi.org/ 10.1038/s41598-021-84333-3. DOI: https://doi.org/10.1038/s41598-021-84333-3 https://doi.org/ 10.1038/s41598-021-84333-3.">

Pham T. S., Nguyen T. D., Tung B. S., Khuyen B. X., Hoang T. T., Ngo Q. M., Hiep L. T. H., Lam V. D. - Optimal frequency for magnetic resonant wireless power transfer in conducting medium, Sci. Rep. 11 (2021) 1-11. https://doi.org/10.1038/s41598-021-98153-y. DOI: https://doi.org/10.1038/s41598-021-98153-y https://doi.org/10.1038/s41598-021-98153-y.">

Xu D., Zhang Q., Li X. - Implantable magnetic resonance wireless power transfer system based on 3D flexible coils, Sustainability. 12 (2020) 4149. https://doi.org/10.3390/ su12104149. DOI: https://doi.org/10.3390/su12104149 https://doi.org/10.3390/ su12104149.">

Assawaworrarit S., Yu X., Fan S. - Robust wireless power transfer using a nonlinear parity-time-symmetric circuit, Nature. 546 (2017) 387-390. https://doi.org/10.1038/ nature22404. DOI: https://doi.org/10.1038/nature22404 https://doi.org/10.1038/ nature22404.">

Choi J. H., Kang S. H., Jung C. W. - Magnetic resonant wireless power transfer with L-shape arranged resonators for laptop computer, J. Electromagn. Eng. Sci. 17 (2017) 126-132. https://doi.org/10.5515/JKIEES.2017.17.3.126. DOI: https://doi.org/10.5515/JKIEES.2017.17.3.126 https://doi.org/10.5515/JKIEES.2017.17.3.126.">

Kurs A., Karalis A., Moffatt R., Joannopoulos J. D., Fisher P., Soljačić M. - Wireless power transfer via strongly coupled magnetic resonances, Science 317 (2007) 83-86. https://doi.org/10.1126/science.1143254. DOI: https://doi.org/10.1126/science.1143254 https://doi.org/10.1126/science.1143254.">

Roberts D. M., Clements A. P., McDonald R., Bobowski J. S., Johnson T. - Mid-range wireless power transfer at 100 MHz using magnetically coupled loop-gap resonators, IEEE Trans. Microw. Theory Tech. 69 (2021) 3510-3527. https://doi.org/10.1109/ TMTT.2021.3073133. DOI: https://doi.org/10.1109/TMTT.2021.3073133 https://doi.org/10.1109/ TMTT.2021.3073133.">

Shi L., Rasool N., Zhu H., Huang K., Yang Y. - Design and experiment of a reconfigurable magnetic resonance coupling wireless power transmission system, IEEE Microw. Wirel. Components Lett. 30 (2020) 705-708. https://doi.org/10.1109/LMWC.2020.2997068. DOI: https://doi.org/10.1109/LMWC.2020.2997068 https://doi.org/10.1109/LMWC.2020.2997068.">

Mollaei M. S. M., Jayathurathnage P., Tretyakov S. A., Simovski C. R. - High-impedance wireless power transfer transmitter coils for freely positioning receivers, IEEE Access. 9 (2021) 42994-43000. https://doi.org/10.1109/ACCESS.2021.3064212. DOI: https://doi.org/10.1109/ACCESS.2021.3064212 https://doi.org/10.1109/ACCESS.2021.3064212.">

Huang X., Zhang C., Cong L., Cai R., Yang F., Lu C. - Development and prospects of metamaterial in wireless power transfer, IET Power Electron. 14 (2021) 2423-2440. https://doi.org/https://doi.org/10.1049/pel2.12189. DOI: https://doi.org/10.1049/pel2.12189 https://doi.org/https://doi.org/10.1049/pel2.12189.">

Lee W., Yoon Y. K. - Wireless power transfer systems using metamaterials: A review, IEEE Access. 8 (2020) 147930-147947. https://doi.org/10.1109/ACCESS.2020.3015176. DOI: https://doi.org/10.1109/ACCESS.2020.3015176 https://doi.org/10.1109/ACCESS.2020.3015176.">

Kung M. L., Lin K. H. - Investigation of multi-layer metamaterial for enhancing efficiency of near-field wireless power transfer systems, in: 2018 Prog. Electromagn. Res. Symp., 2018: pp. 2484-2488. https://doi.org/10.23919/PIERS.2018.8597730. DOI: https://doi.org/10.23919/PIERS.2018.8597730 https://doi.org/10.23919/PIERS.2018.8597730.">

Sun K., Fan R., Zhang X., Zhang Z., Shi Z., Wang N., Xie P., Wang Z., Fan G., Liu H., Liu C., Li T., Yan C., Guo Z. - An overview of metamaterials and their achievements in wireless power transfer, J. Mater. Chem. C. 6 (2018) 2925-2943. https://doi.org/10.1039 /C7TC03384B. DOI: https://doi.org/10.1039/C7TC03384B https://doi.org/10.1039 /C7TC03384B.">

Das R., Basir A., Yoo H. - A metamaterial-coupled wireless power transfer system based on cubic high-dielectric resonators, IEEE Trans. Ind. Electron. 66 (2019) 7397-7406. https://doi.org/10.1109/TIE.2018.2879310. DOI: https://doi.org/10.1109/TIE.2018.2879310 https://doi.org/10.1109/TIE.2018.2879310.">

Rong C., Lu C., Zeng Y., Tao X., Liu X., Liu R., He X., Liu M. - A critical review of metamaterial in wireless power transfer system, IET Power Electron. 14 (2021) 1541-1559. https://doi.org/https://doi.org/10.1049/pel2.12099. DOI: https://doi.org/10.1049/pel2.12099 https://doi.org/https://doi.org/10.1049/pel2.12099.">

Mi C. C., Buja G., Choi S. Y., Rim C. T. - Modern advances in wireless power transfer systems for roadway powered electric vehicles, IEEE Trans. Ind. Electron. 63 (2016) 6533-6545. https://doi.org/10.1109/TIE.2016.2574993. DOI: https://doi.org/10.1109/TIE.2016.2574993 https://doi.org/10.1109/TIE.2016.2574993.">

Garnica J., Chinga R. A., Lin J. - Wireless power transmission: From far field to near field, Proc. IEEE. 101 (2013) 1321-1331. https://doi.org/10.1109/JPROC.2013.2251411. DOI: https://doi.org/10.1109/JPROC.2013.2251411 https://doi.org/10.1109/JPROC.2013.2251411.">

Lin J. C. - Space solar-power stations, wireless power transmissions, and biological implications, IEEE Microw. Mag. 3 (2002) 36–42. https://doi.org/10.1109/6668.990673. DOI: https://doi.org/10.1109/6668.990673 https://doi.org/10.1109/6668.990673.">

Hui S. Y. R., Zhong W., Lee C. K. - A critical review of recent progress in mid-range wireless power transfer, IEEE Trans. Power Electron. 29 (2014) 4500-4511. https://doi.org/10.1109/TPEL.2013.2249670. DOI: https://doi.org/10.1109/TPEL.2013.2249670 https://doi.org/10.1109/TPEL.2013.2249670.">

Khan H., Ali S. A., Wajid M., Alam M. S. - Antenna array design on flexible substrate for wireless power transfer, Front. Eng. Built Environ. 1 (2021) 55-67. https://doi.org/10.1108/FEBE-03-2021-0018. DOI: https://doi.org/10.1108/FEBE-03-2021-0018 https://doi.org/10.1108/FEBE-03-2021-0018.">

Xia M., Aïssa S. - On the efficiency of far-field wireless power transfer, IEEE Trans. Signal Process. 63 (2015) 2835-2847. https://doi.org/10.1109/TSP.2015.2417497. DOI: https://doi.org/10.1109/TSP.2015.2417497 https://doi.org/10.1109/TSP.2015.2417497.">

Zhang Z., Pang H., Georgiadis A., Cecati C. - Wireless power transfer - an overview, IEEE Trans. Ind. Electron. 66 (2019) 1044-1058. https://doi.org/10.1109/TIE.2018. 2835378. DOI: https://doi.org/10.1109/TIE.2018.2835378 https://doi.org/10.1109/TIE.2018. 2835378.">

Ali A., Yasin M. N. M., Husin M. F. C., Hambali N. A. M. A. - Design and analysis of 2-coil wireless power transfer (WPT) using magnetic coupling technique, Int. J. Power Electron. Drive Syst. 10 (2019) 611-616. DOI: https://doi.org/10.11591/ijpeds.v10.i2.pp611-616

Alrawashdeh R. - A review on wireless power transfer in free space and conducting lossy media, Jordanian J. Comput. Inf. Technol. 03 (2017) 71-88. https://doi.org/10.5455/ jjcit.71-1483030287. https://doi.org/10.5455/ jjcit.71-1483030287.">

Younesiraad H., Bemani M. - Analysis of coupling between magnetic dipoles enhanced by metasurfaces for wireless power transfer efficiency improvement, Sci. Rep. 8 (2018) 1-11. https://doi.org/10.1038/s41598-018-33174-8. DOI: https://doi.org/10.1038/s41598-018-33174-8 https://doi.org/10.1038/s41598-018-33174-8.">

Chu S., Stevens C. J., Shamonina E. - Wireless power transfer in attenuating media, AIP Adv. 11 (2021) 1-7. https://doi.org/10.1063/5.0059932. DOI: https://doi.org/10.1063/5.0059932 https://doi.org/10.1063/5.0059932.">

Seo D. W., Lee J. H., Lee H. - Study on two-coil and four-coil wireless power transfer system using Z-parameter approach, ETRI J. 38 (2016) 568-578. https://doi.org/10.4218 /etrij.16.0115.0692. https://doi.org/10.4218 /etrij.16.0115.0692.">

Houran M. A., Yang X., Chen W. - Magnetically coupled resonance WPT: review of compensation topologies, resonator structures with misalignment, and EMI diagnostics, Electronics. 7 (2018) 1-45. https://doi.org/10.3390/electronics7110296. DOI: https://doi.org/10.3390/electronics7110296 https://doi.org/10.3390/electronics7110296.">

Zhang X., Meng H., Wei B., Wang S., Yang Q. - An improved three-coil wireless power link to increase spacing distance and power for magnetic resonant coupling system, EURASIP J. Wirel. Commun. Netw. 2018 (2018) 1-8. https://doi.org/10.1186/s13638-018-1148-8. DOI: https://doi.org/10.1186/s13638-018-1148-8 https://doi.org/10.1186/s13638-018-1148-8.">

Pham T. S., Nguyen T. V., Nguyen D. K., Ha T. K. D. - Investigation on coil misalignment affect magnetic resonant wireless power transfer system, Journal of Military Science and Technology. 75 (2021) 57-64. (in Vietnamese).

Kim D., Kim J., Park Y. - Optimization and design of small circular coils in a magnetically coupled wireless power transfer system in the megahertz frequency, IEEE Trans. Microw. Theory Tech. 64 (2016) 2652-2663. https://doi.org/10.1109/ TMTT.2016.2582874. https://doi.org/10.1109/ TMTT.2016.2582874.">

Kang S. H., Nguyen V. T., Jung C. W. - Analysis of MR-WPT using planar textile resonators for wearable applications, IET Microwaves, Antennas Propag. 10 (2016) 1541-1546. https://doi.org/https://doi.org/10.1049/iet-map.2016.0024. DOI: https://doi.org/10.1049/iet-map.2016.0024 https://doi.org/https://doi.org/10.1049/iet-map.2016.0024.">

Liu X., Wang G. - A novel wireless power transfer system with double intermediate resonant coils, IEEE Trans. Ind. Electron. 63 (2016) 2174-2180. https://doi.org/ 10.1109/TIE.2015.2510512. https://doi.org/ 10.1109/TIE.2015.2510512.">

Zhang Y., Zhao Z. - Frequency splitting analysis of two-coil resonant wireless power transfer, IEEE Antennas Wirel. Propag. Lett. 13 (2014) 400-402. https://doi.org/10.1109/LAWP.2014.2307924. DOI: https://doi.org/10.1109/LAWP.2014.2307924 https://doi.org/10.1109/LAWP.2014.2307924.">

Ishizaki T., Komori T., Ishida T., Awai I. - Comparative study of coil resonators for wireless power transfer system in terms of transfer loss, IEICE Electron. Express. 7 (2010) 785-790. https://doi.org/10.1587/elex.7.785. DOI: https://doi.org/10.1587/elex.7.785 https://doi.org/10.1587/elex.7.785.">

Kang S. H., Park S., Jung C. W. - Textile resonators using a sintered metal conductor for wearable MR-WPT with high efficiency and wearability, Microw. Opt. Technol. Lett. 59 (2017) 668-672. https://doi.org/https://doi.org/10.1002/mop.30363. DOI: https://doi.org/10.1002/mop.30363 https://doi.org/https://doi.org/10.1002/mop.30363.">

Sample A. P., Meyer D. T., Smith J. R. - Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Trans. Ind. Electron. 58 (2011) 544-554. https://doi.org/10.1109/TIE.2010.2046002. DOI: https://doi.org/10.1109/TIE.2010.2046002 https://doi.org/10.1109/TIE.2010.2046002.">

Sample A. P., Waters B. H., Wisdom S. T., Smith J. R. - Enabling seamless wireless power delivery in dynamic environments, Proc. IEEE. 101 (2013) 1343-1358. https://doi.org/10.1109/JPROC.2013.2252453. DOI: https://doi.org/10.1109/JPROC.2013.2252453 https://doi.org/10.1109/JPROC.2013.2252453.">

Veselago V. G. - The electrodynamics of substances with simultaneously negative values of epsilon and mu, Sov. Phys. Uspekhi. 10 (1968) 509-514. https://doi.org/ 10.1070/pu1968v010n04abeh003699. DOI: https://doi.org/10.1070/PU1968v010n04ABEH003699 https://doi.org/ 10.1070/pu1968v010n04abeh003699.">

Pendry J. B., Holden A. J., Stewart W. J., Youngs I. - Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 (1996) 4773-4776. DOI: https://doi.org/10.1103/PhysRevLett.76.4773

Pendry J. B., Holden A. J., Robbins D. J., Stewart W. J. - Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. 47 (1999) 2075-2084. https://doi.org/10.1109/22.798002. DOI: https://doi.org/10.1109/22.798002 https://doi.org/10.1109/22.798002.">

Rao S., Ong K. - Amplification of evanescent waves in a lossy left-handed material slab, Phys. Rev. B - Condens. Matter Mater. Phys. 68 (2003) 1-4. https://doi.org/10.1103 /PhysRevB.68.113103. DOI: https://doi.org/10.1103/PhysRevB.68.113103 https://doi.org/10.1103 /PhysRevB.68.113103.">

Smith D. R., Padilla W. J., Vier D. C., Nemat-Nasser S. C., Schultz S. - Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184-4187. https://doi.org/10.1103/PhysRevLett.84.4184. DOI: https://doi.org/10.1103/PhysRevLett.84.4184 https://doi.org/10.1103/PhysRevLett.84.4184.">

Pendry J. B. - Negative refraction, Contemp. Phys. 45 (2004) 191-202. https://doi.org/ 10.1080/00107510410001667434. DOI: https://doi.org/10.1080/00107510410001667434 https://doi.org/ 10.1080/00107510410001667434.">

Nguyen H. T., Bui T. S., Yan S., Vandenbosch G. A. E., Lievens P., Vu L. D., E. Janssens - Broadband negative refractive index obtained by plasmonic hybridization in metamaterials, Appl. Phys. Lett. 109 (2016) 1-5. https://doi.org/10.1063/1.4968802. DOI: https://doi.org/10.1063/1.4968802 https://doi.org/10.1063/1.4968802.">

Tung B. S., Khuyen B. X., Linh P. T., Tung N. T., Manh D. H., Lam V. D. - Polarization-insensitive electromagnetically-induced transparency in planar metamaterial based on coupling of ring and zigzag spiral resonators, Mod. Phys. Lett. B. 34 (2020) 2050093. https://doi.org/10.1142/S0217984920500931. DOI: https://doi.org/10.1142/S0217984920500931 https://doi.org/10.1142/S0217984920500931.">

Almoneef T. S., Ramahi O. M. - Metamaterial electromagnetic energy harvester with near unity efficiency, Appl. Phys. Lett. 106 (2015) 1-4. https://doi.org/10.1063/1.4916232. DOI: https://doi.org/10.1063/1.4916232 https://doi.org/10.1063/1.4916232.">

Khuyen B. X., Tung B. S., Dung N. V., Yoo Y. J., Kim Y. J., Kim K. W., Lam V. D., Yang J. G., Lee Y. - Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization, J. Appl. Phys. 117 (2015) 1-7. https://doi.org/10.1063/ 1.4923053. DOI: https://doi.org/10.1063/1.4923053 https://doi.org/10.1063/ 1.4923053.">

Tiep D. H., Khuyen B. X., Tung B. S., Kim Y. J., Hwang J. S., Lam V. D., Lee Y. P. - Enhanced-bandwidth perfect absorption based on a hybrid metamaterial, Opt. Mater. Express. 8 (2018) 2751-2759. https://doi.org/10.1364/OME.8.002751. DOI: https://doi.org/10.1364/OME.8.002751 https://doi.org/10.1364/OME.8.002751.">

Khuyen B. X., Tung B. S., Yoo Y. J., Kim Y. J., Kim K. W., Chen L. Y., Lam V. D., Lee Y. - Miniaturization for ultrathin metamaterial perfect absorber in the VHF band, Sci. Rep. 7 (2017) 1-7. https://doi.org/10.1038/srep45151. DOI: https://doi.org/10.1038/srep45151 https://doi.org/10.1038/srep45151.">

Ha D. T., Tung B. S., Khuyen B. X., Pham T. S., Tung N. T., Tung N. H., Hoa N. T., Lam V. D., Zheng H., Chen L., Lee Y. - Dual-band, polarization-insensitive, ultrathin and flexible metamaterial absorber based on high-order magnetic resonance, Photonics 8 (2021) 574. https://doi.org/10.3390/photonics8120574. DOI: https://doi.org/10.3390/photonics8120574 https://doi.org/10.3390/photonics8120574.">

Long L. V., Khiem N. S., Tung B. S., Tung N. T., Giang T. T., Son P. T., Khuyen B. X., Lam V. D., Chen L., Zheng H., Lee Y. - Flexible broadband metamaterial perfect absorber based on graphene-conductive inks, Photonics. 8 (2021) 440. https://doi.org/10.3390/ photonics8100440. DOI: https://doi.org/10.3390/photonics8100440 https://doi.org/10.3390/ photonics8100440.">

Singh G., Ni R., Marwaha A. - A review of metamaterials and its applications, Int. J. Eng. Trends Technol. 19 (2015) 305-310. https://doi.org/10.14445/22315381/ijett-v19p254. DOI: https://doi.org/10.14445/22315381/IJETT-V19P254 https://doi.org/10.14445/22315381/ijett-v19p254.">

Bui T. S., Dao T. D., Dang L. H., Vu L. D., Ohi A., Nabatame T., Lee Y., Nagao T., Hoang C. V. - Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules, Sci. Rep. 6 (2016) 1-7. https://doi.org/10.1038/srep32123. DOI: https://doi.org/10.1038/srep32123 https://doi.org/10.1038/srep32123.">

Ha D. T., Dzung N. D., Ngoc N. V., Tung B. S., Pham T. S., Lee Y., Chen L. Y., Khuyen B. X., Lam V. D. - Switching between perfect absorption and polarization conversion, based on hybrid metamaterial in the GHz and THz bands, J. Phys. D. Appl. Phys. 54 (2021) 1-10. https://doi.org/10.1088/1361-6463/abeb97. DOI: https://doi.org/10.1088/1361-6463/abeb97 https://doi.org/10.1088/1361-6463/abeb97.">

Nguyen T. H., Bui S. T., Nguyen X. C., Vu D. L., Bui X. K. - Tunable broadband-negative-permeability metamaterials by hybridization at THz frequencies, RSC Adv. 10 (2020) 28343-28350. https://doi.org/10.1039/D0RA04612D. DOI: https://doi.org/10.1039/D0RA04612D https://doi.org/10.1039/D0RA04612D.">

Radkovskaya A., Petrov P., Kiriushechkina S., Satskiy A., Ivanyukovich M., Vakulenko A., Prudnikov V., Kotelnikova O., Korolev A., Zakharov P. - Magnetic metamaterials: Coupling and permeability, J. Magn. Magn. Mater. 459 (2018) 187-190. https://doi.org/10.1016/j.jmmm.2017.11.031. DOI: https://doi.org/10.1016/j.jmmm.2017.11.031 https://doi.org/10.1016/j.jmmm.2017.11.031.">

Zhang Y., Tang H., Yao C., Li Y., Xiao S. - Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission, AIP Adv. 5 (2015) 1-9. https://doi.org/10.1063/1.4907043. DOI: https://doi.org/10.1063/1.4907043 https://doi.org/10.1063/1.4907043.">

Smith D. R., Schultz S., Markoš P., Soukoulis C. M. - Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B. 65 (2002) 1-5. https://doi.org/10.1103/PhysRevB.65.195104. DOI: https://doi.org/10.1103/PhysRevB.65.195104 https://doi.org/10.1103/PhysRevB.65.195104.">

Smith D. R., Vier D. C., Koschny T., Soukoulis C. M. - Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E. 71 (2005) 1-11. https: //doi.org/10.1103/PhysRevE.71.036617. DOI: https://doi.org/10.1103/PhysRevE.71.036617

Rothwell E. J., Frasch J. L., Ellison S. M., Chahal P., Ouedraogo R. O. - Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials, Prog. Electromagn. Res. 157 (2016) 31-47. https://doi.org/ 10.2528/PIER16071706. DOI: https://doi.org/10.2528/PIER16071706 https://doi.org/ 10.2528/PIER16071706.">

Chen X., Grzegorczyk T. M., Wu B. I., Pacheco J., Kong J. A. - Robust method to retrieve the constitutive effective parameters of metamaterials, Phys. Rev. E. 70 (2004) 1-7. https://doi.org/10.1103/PhysRevE.70.016608. DOI: https://doi.org/10.1103/PhysRevE.70.016608 https://doi.org/10.1103/PhysRevE.70.016608.">

Pham T. S., Nguyen T. D., Vu D. L. - Metamaterials for improving efficiency of magnetic resonant wireless power transfer applications, Commun. Phys. 32 (2022) 1-8. DOI: https://doi.org/10.15625/0868-3166/16049

Ranaweera A. L. A. K., Duong T. P., Lee J. W. - Experimental investigation of compact metamaterial for high efficiency mid-range wireless power transfer applications, J. Appl. Phys. 116 (2014) 1-8. https://doi.org/10.1063/1.4891715. DOI: https://doi.org/10.1063/1.4891715 https://doi.org/10.1063/1.4891715.">

Harris W. C., Stancil D. D., Ricketts D. S. - Improved wireless power transfer efficiency with non-perfect lenses, Appl. Phys. Lett. 114 (2019) 1-4. https://doi.org/ 10.1063/1.5081629. DOI: https://doi.org/10.1063/1.5081629 https://doi.org/ 10.1063/1.5081629.">

Zhao Y. - Evanescent wave amplification and subwavelength imaging by ultrathin uniaxial μ-near-zero material, AIP Adv. 4 (2014) 1-6. https://doi.org/10.1063/1.4866579. DOI: https://doi.org/10.1063/1.4866579 https://doi.org/10.1063/1.4866579.">

Lee W., Yoon Y. K. - Rollable metamaterial screen for magnetic resonance coupling-based high-efficiency wireless power transfer, Int. J. Microw. Wirel. Technol. 13 (2021) 365-373. https://doi.org/DOI: 10.1017/S1759078720001221. DOI: https://doi.org/10.1017/S1759078720001221 https://doi.org/DOI: 10.1017/S1759078720001221.">

Shamonina E., Kalinin V. A., Ringhofer K. H., Solymar L. - Magneto-inductive waveguide, Electron. Lett. 38 (2002) 371-373. https://doi.org/10.1049/el:20020258. DOI: https://doi.org/10.1049/el:20020258 https://doi.org/10.1049/el:20020258.">

Chu S., Luloff M. S., Yan J., Petrov P., Stevens C. J., Shamonina E. - Magnetoinductive waves in attenuating media, Sci. Rep. 11 (2021) 1-12. https://doi.org/10.1038/s41598-021-85838-7. DOI: https://doi.org/10.1038/s41598-021-85838-7 https://doi.org/10.1038/s41598-021-85838-7.">

Sandoval F. S., Delgado S. M. T., Moazenzadeh A., Wallrabe U. - A 2-D magnetoinductive wave device for freer wireless power transfer, IEEE Trans. Power Electron. 34 (2019) 10433-10445. https://doi.org/10.1109/TPEL.2019.2904875. DOI: https://doi.org/10.1109/TPEL.2019.2904875 https://doi.org/10.1109/TPEL.2019.2904875.">

Shamonina E., Kalinin V. A., Ringhofer K .H., Solymar L. - Magnetoinductive waves in one, two, three dimensions, J. Appl. Phys. 92 (2002) 6252-6261. https://doi.org/ 10.1063/1.1510945. DOI: https://doi.org/10.1063/1.1510945 https://doi.org/ 10.1063/1.1510945.">

Yang F., Song J., Guo Z., Wu X., Zhu K., Jiang J., Sun Y., Jiang H., Li Y., Chen H. - Actively controlled asymmetric edge states for directional wireless power transfer, Opt. Express. 29 (2021) 7844-7857. https://doi.org/10.1364/OE.417887. DOI: https://doi.org/10.1364/OE.417887 https://doi.org/10.1364/OE.417887.">

Song J., Yang F., Guo Z., Wu X., Zhu K., Jiang J., Sun Y., Li Y., Jiang H., Chen H. - Wireless power transfer via topological modes in dimer chains, Phys. Rev. Appl. 15 (2021) 1-13. https://doi.org/10.1103/PhysRevApplied.15.014009. DOI: https://doi.org/10.1103/PhysRevApplied.15.014009 https://doi.org/10.1103/PhysRevApplied.15.014009.">

Feis J., Stevens C. J., Shamonina E. - Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms, Appl. Phys. Lett. 117 (2020) 1-6. https://doi.org/10.1063/5.0024077. DOI: https://doi.org/10.1063/5.0024077 https://doi.org/10.1063/5.0024077.">

Syms R. R. A., Shamonina E., Solymar L. - Positive and negative refraction of magnetoinductive waves in two dimensions, Eur. Phys. J. B. Condens. Matter Complex Syst. 46 (2005) 301-308. https://doi.org/10.1140/epjb/e2005-00253-9. DOI: https://doi.org/10.1140/epjb/e2005-00253-9 https://doi.org/10.1140/epjb/e2005-00253-9.">

Pham T. S., Bui H. N., Lee J. W. - Wave propagation control and switching for wireless power transfer using tunable 2-D magnetic metamaterials, J. Magn. Magn. Mater. 485 (2019) 126-135. https://doi.org/10.1016/j.jmmm.2019.04.034. DOI: https://doi.org/10.1016/j.jmmm.2019.04.034 https://doi.org/10.1016/j.jmmm.2019.04.034.">

Sydoruk O., Zhuromskyy O., Shamonina E., Solymar L. - Phonon-like dispersion curves of magnetoinductive waves, Appl. Phys. Lett. 87 (2005) 1-3. https://doi.org/ 10.1063/1.2011789. DOI: https://doi.org/10.1063/1.2011789 https://doi.org/ 10.1063/1.2011789.">

Younesiraad H., Bemani M., Matekovits L. - Optimal Huygens’ metasurface for wireless power transfer efficiency improvement, IEEE Access. 8 (2020) 216409-216418. https://doi.org/10.1109/ACCESS.2020.3041337. DOI: https://doi.org/10.1109/ACCESS.2020.3041337 https://doi.org/10.1109/ACCESS.2020.3041337.">

Rong C., Tao X., Lu C., Hu Z., Huang X., Zeng Y., Liu M. - Analysis and optimized design of metamaterials for mid-range wireless power transfer using a class-E RF power amplifier, Appl. Sci. 9 (2019) 1-14. https://doi.org/10.3390/app9010026. DOI: https://doi.org/10.3390/app9010026 https://doi.org/10.3390/app9010026.">

Song M., Baryshnikova K., Markvart A., Belov P., Nenasheva E., Simovski C., Kapitanova P. - Smart table based on a metasurface for wireless power transfer, Phys. Rev. Appl. 11 (2019) 1-9. https://doi.org/10.1103/PhysRevApplied.11.054046. DOI: https://doi.org/10.1103/PhysRevApplied.11.054046 https://doi.org/10.1103/PhysRevApplied.11.054046.">

Wang B., Teo K. H., Nishino T., Yerazunis W., Barnwell J., Zhang J. - Experiments on wireless power transfer with metamaterials, Appl. Phys. Lett. 98 (2011) 1-4. https:// doi.org/10.1063/1.3601927. DOI: https://doi.org/10.1063/1.3601927

Wu Q., Li Y. H., Gao N., Yang F., Chen Y. Q., Fang K., Zhang Y. W., Chen H. - Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms, EPL (Europhysics Lett. 109 (2015) 1-6. https://doi.org /10.1209/0295-5075/109/68005. DOI: https://doi.org/10.1209/0295-5075/109/68005 https://doi.org /10.1209/0295-5075/109/68005.">

Rodríguez E. S. G., RamRakhyani A. K., Schurig D., Lazzi G. - Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement, IEEE Trans. Microw. Theory Tech. 64 (2016) 1644-1654. https://doi.org/10.1109/ TMTT.2016.2549526. DOI: https://doi.org/10.1109/TMTT.2016.2549526 https://doi.org/10.1109/ TMTT.2016.2549526.">

Chen J., Ding Z., Hu Z., Wang S., Cheng Y., Liu M., Wei B., Wang S. - Metamaterial-based high-efficiency wireless power transfer system at 13.56 Mhz for low power applications, Prog. Electromagn. Res. B. 72 (2017) 17-30. DOI: https://doi.org/10.2528/PIERB16071509

Zeng Y., Lu C., Rong C., Tao X., Liu X., Liu R., Liu M. - Analysis and design of asymmetric mid-range wireless power transfer system with metamaterials, Energies. 14 (2021) 1-10. https://doi.org/10.3390/en14051348. DOI: https://doi.org/10.3390/en14051348 https://doi.org/10.3390/en14051348.">

Brizi D., Fontana N., Barmada S., Monorchio A. - An accurate equivalent circuit model of metasurface-based wireless power transfer systems, IEEE Open J. Antennas Propag. 1 (2020) 549-559. https://doi.org/10.1109/OJAP.2020.3028297. DOI: https://doi.org/10.1109/OJAP.2020.3028297 https://doi.org/10.1109/OJAP.2020.3028297.">

Brizi D., Stang J. P., Monorchio A., Lazzi G. - A compact magnetically dispersive surface for low-frequency wireless power transfer applications, IEEE Trans. Antennas Propag. 68 (2020) 1887-1895. https://doi.org/10.1109/TAP.2020.2967320. DOI: https://doi.org/10.1109/TAP.2020.2967320 https://doi.org/10.1109/TAP.2020.2967320.">

Correa D. C., Resende U. C., Bicalho F. S. - Experiments with a compact wireless power transfer system using strongly coupled magnetic resonance and metamaterials, IEEE Trans. Magn. 55 (2019) 8401904. https://doi.org/10.1109/TMAG.2019.2913767. DOI: https://doi.org/10.1109/TMAG.2019.2913767 https://doi.org/10.1109/TMAG.2019.2913767.">

Pham T. S., Khuyen B. X., Tung B. S., Hoang T. T., Pham V. D., Ngo Q. M., Lam V. D. - Enhanced efficiency of asymmetric wireless power transmission using defects in 2D magnetic metamaterials, J. Electron. Mater. 50 (2021) 443-449. https://doi.org/ 10.1007/s11664-020-08586-w. DOI: https://doi.org/10.1007/s11664-020-08586-w https://doi.org/ 10.1007/s11664-020-08586-w.">

Duong T. P., Lee J. W. - A dynamically adaptable impedance-matching system for midrange wireless power transfer with misalignment, Energies. 2015 (2015) 7593-7617. https://doi.org/10.3390/en8087593. DOI: https://doi.org/10.3390/en8087593 https://doi.org/10.3390/en8087593.">

Ranaweera A. L. A. K., Moscoso C. A., Lee J. W. - Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment, J. Phys. D. Appl. Phys. 48 (2015) 1-8. https://doi.org/10.1088/0022-3727/48/45/455104. DOI: https://doi.org/10.1088/0022-3727/48/45/455104 https://doi.org/10.1088/0022-3727/48/45/455104.">

Wang S., Jiang C., Tao X., Chen F., Rong C., Lu C., Zeng Y., Liu X., Liu R., Wei B., Liu M. - Enhancing the stability of medium range and misalignment wireless power transfer system by negative magnetic metamaterials, Materials (Basel). 13 (2020) 1-11. https://doi.org/10.3390/ma13245695. DOI: https://doi.org/10.3390/ma13245695 https://doi.org/10.3390/ma13245695.">

Lee W., Yoon Y. K. - Tunable metamaterial slab for efficiency improvement in misaligned wireless power transfer, IEEE Microw. Wirel. Components Lett. 30 (2020) 912-915. https://doi.org/10.1109/LMWC.2020.3015680. DOI: https://doi.org/10.1109/LMWC.2020.3015680 https://doi.org/10.1109/LMWC.2020.3015680.">

Kim J., Kim J., Kong S., Kim H., Suh I. S., Suh N. P., Cho D. H., Kim J., Ahn S. - Coil design and shielding methods for a magnetic resonant wireless power transfer system, Proc. IEEE. 101 (2013) 1332-1342. https://doi.org/10.1109/JPROC.2013.2247551. DOI: https://doi.org/10.1109/JPROC.2013.2247551 https://doi.org/10.1109/JPROC.2013.2247551.">

Lipworth G., Ensworth J., Seetharam K., Lee J. S., Schmalenberg P., Nomura T., Reynolds M. S., Smith D. R., Urzhumov Y. - Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials, Sci. Rep. 5 (2015) 1-8. https://doi.org/ 10.1038/srep12764. DOI: https://doi.org/10.1038/srep12764 https://doi.org/ 10.1038/srep12764.">

Lu C., Huang X., Rong C., Hu Z., Chen J., Tao X., Wang S., Wei B., Liu M. - Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial, J. Eng. 2019 (2019) 1812-1815. https://digital-library.theiet.org/content/ journals/10.1049/joe.2018.8678. DOI: https://doi.org/10.1049/joe.2018.8678 https://digital-library.theiet.org/content/ journals/10.1049/joe.2018.8678.">

Markvart A., Song M., Glybovski S., Belov P., Simovski C., Kapitanova P. - Metasurface for near-field wireless power transfer with reduced electric field leakage, IEEE Access. 8 (2020) 40224-40231. https://doi.org/10.1109/ACCESS.2020.2976755. DOI: https://doi.org/10.1109/ACCESS.2020.2976755 https://doi.org/10.1109/ACCESS.2020.2976755.">

Pham T. S., Ranaweera A. K., Lam V. D., Lee J. W. - Experiments on localized wireless power transmission using a magneto-inductive wave two-dimensional metamaterial cavity, Appl. Phys. Express. 9 (2016) 1-4. https://doi.org/10.7567/APEX.9.044101. DOI: https://doi.org/10.7567/APEX.9.044101 https://doi.org/10.7567/APEX.9.044101.">

Bui H. N., Pham T. S., Ngo V., Lee J. W. - Investigation of various cavity configurations for metamaterial-enhanced field-localizing wireless power transfer, J. Appl. Phys. 122 (2017) 1-10. https://doi.org/10.1063/1.5001130. DOI: https://doi.org/10.1063/1.5001130 https://doi.org/10.1063/1.5001130.">

Bui H. N., Pham T. S., Kim J. S., Lee J. W. - Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot, J. Magn. Magn. Mater. 494 (2020) 1-13. https://doi.org/10.1016/ j.jmmm.2019.165778. DOI: https://doi.org/10.1016/j.jmmm.2019.165778 https://doi.org/10.1016/ j.jmmm.2019.165778.">

Bui H. N., Pham T. S., Lee J. W. - Active switching control of field-localized waveguide using time-modulated non-reciprocal reconfigurable metasurface, Results Phys. 27 (2021) 1-9. https://doi.org/https://doi.org/10.1016/j.rinp.2021.104467. DOI: https://doi.org/10.1016/j.rinp.2021.104467 https://doi.org/https://doi.org/10.1016/j.rinp.2021.104467.">

Pham T. S., Ranaweera A. K., Ngo D. V., Lee J. W. - Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer, J. Phys. D. Appl. Phys. 50 (2017) 1-10. https://doi.org/10.1088/1361-6463/aa7988. DOI: https://doi.org/10.1088/1361-6463/aa7988 https://doi.org/10.1088/1361-6463/aa7988.">

Ranaweera A. L. A. K., Pham T. S., Bui H. N., Ngo V., Lee J. W. - An active metasurface for field-localizing wireless power transfer using dynamically reconfigurable cavities, Sci. Rep. 9 (2019) 1-12. https://doi.org/10.1038/s41598-019-48253-7. DOI: https://doi.org/10.1038/s41598-019-48253-7 https://doi.org/10.1038/s41598-019-48253-7.">

Downloads

Published

31-08-2022

How to Cite

[1]
P. Thanh Son, Bui Xuan Khuyen, Bui Son Tung, Le Thi Hong Hiep, and Vu Dinh Lam, “A critical review on wireless power transfer systems using metamaterials”, Vietnam J. Sci. Technol., vol. 60, no. 4, pp. 587–613, Aug. 2022.

Issue

Section

Review