Controlling near-field coupling for switchable metamaterial between absorption and polarization-conversion functions
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16900Keywords:
Metamaterials, polarization conversion, perfect absorptionAbstract
In this paper, a multifunctional metamaterial (MM) structure capable of performing as a polarization converter and absorber is proposed. By using DC bias voltage to control the capacitor of the integrated varactor, the near-field coupling in our structure can be manipulated to flexibly switch between polarization conversion (PC) mode and perfect absorption (PA) mode. The numerical simulation results show that in PC mode the polarization conversion ratio exceeds 90 % at 4 GHz, while the dual-band absorption is observed in PA mode with a value close to 90 % at 3.5 and 5.5 GHz. In addition, we also reduce the geometric sizes of the proposed structure to further examine its performance in the THz frequency range. Owing to its excellent characteristics in both PA and PC modes, the proposed hybrid MM structure is promising to apply in many fields such as radar, remote sensing, and satellite.
Downloads
References
Shalaev V. M. - Optical negative-index metamaterials, Nat. Phot. 1 (1) (2007) 41-48. https://doi.org/10.1038/nphoton.2006.49. DOI: https://doi.org/10.1038/nphoton.2006.49
Li W. and Valentine J. - Metamaterial perfect absorber based hot electron photodetection, Nano Lett. 14 (6) (2014) 3510-3514. https://doi.org/10.1021/nl501090w. DOI: https://doi.org/10.1021/nl501090w
Khan M. I., Fraz Q. and Tahir F. A. - Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle, J. Appl. Phys. 121 (4) (2017) 045103. https://doi.org/10.1063/1.4974849. DOI: https://doi.org/10.1063/1.4974849
Landy N. I., Sajuyigbe S., Mock J. J., Smith D. R. and Padilla W. J. - Perfect metamaterial absorber, Phys. Rev. Lett. 100 (20) (2008) 207402. https://doi.org/10.1103/ PhysRevLett.100.207402. DOI: https://doi.org/10.1103/PhysRevLett.100.207402
Kim Y. J., Hwang J. S., Yoo Y. J., Khuyen B. X., Rhee J. Y., Chen X. and Lee Y. - Ultrathin microwave metamaterial absorber utilizing embedded resistors, J. Phys. D: Appl. Phys. 50 (40) (2017) 405110. https://doi.org/10.1088/1361-6463/aa82f4. DOI: https://doi.org/10.1088/1361-6463/aa82f4
Grant J., Ma Y., Saha S., Khalid A. and Cumming D. R. S. - Polarization insensitive, broadband terahertz metamaterial absorber, Opt. Lett. 36 (17) (2011) 3476-3478. https://doi.org/10.1364/OL.36.003476. DOI: https://doi.org/10.1364/OL.36.003476
Prakash D. and Gupta N. - Applications of metamaterial sensors: a review, Int. J. Microw. Wirel. Technol. 14 (1) (2021) 19-33. https://doi.org/10.1017/S1759078721000039. DOI: https://doi.org/10.1017/S1759078721000039
Rufangura P. and Sabah C. - Perfect metamaterial absorber for applications in sustainable and high-efficiency solar cells, J. Nanophotonics. 12 (2) (2018) 026002. https://doi.org/ 10.1117/1.JNP.12.026002. DOI: https://doi.org/10.1117/1.JNP.12.026002
Watts C. M., Liu X. and Padilla W. J. - Metamaterial electromagnetic wave absorbers, Adv. Mater. 24 (23) (2012) OP98-OP120. https://doi.org/10.1002/adma.201200674. DOI: https://doi.org/10.1002/adma.201200674
Rahman S. U., Cao Q., Akram M. R., Amin F. and Wang Y. - Multifunctional polarization converting metasurface and its application to reduce the radar cross-section of an isolated MIMO antenna, J. Phys. D: Appl. Phys. 53 (30) (2020) 305001. https://doi.org/10.1088/1361-6463/ab85e7. DOI: https://doi.org/10.1088/1361-6463/ab85e7
Dietlein C., Luukanen A., Popovi Z. and Grossman E. - A W-band polarization converter and isolator, IEEE Trans. Antennas Propag. 55 (6) (2007) 1804-1809. http://dx.doi.org/ 10.1109/TAP.2007.898595. DOI: https://doi.org/10.1109/TAP.2007.898595
Ren Z., Sun Y., Zhang S., Zhang K., Lin Z. and Wang S. - Wide wavelength range tunable guided-mode resonance filters based on incident angle rotation for all telecommunication bands, Infrared Phys. Technol. 93 (2018) 81-86. https://doi.org/10.1016/j.infrared.2018.07.015. DOI: https://doi.org/10.1016/j.infrared.2018.07.015
Mookiah P. and Dandekar K. R. - Metamaterial-substrate antenna array for MIMO communication system, IEEE Trans. Antennas Propag. 57 (10) (2009) 3283-3292. https://doi.org/10.1109/TAP.2009.2028638. DOI: https://doi.org/10.1109/TAP.2009.2028638
Glybovski S. B., Tretyakov S. A., Belov P. A., Kivshar Y. S. and Simovski C. R. - Metasurfaces: From microwaves to visible, Phys. Rep. 634 (2016) 1-72. https://doi.org/10.1016/j.physrep.2016.04.004. DOI: https://doi.org/10.1016/j.physrep.2016.04.004
Khuyen B. X., Tung B. S., Kim Y. J., Hwang J. S., Kim K. W., Rhee J. Y., Lam V. D., Kim Y. H. and Lee Y. P. - Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency, Sci. Rep. 8 (2018) 11632. https://doi.org/10.1038/s41598-018-29896-4. DOI: https://doi.org/10.1038/s41598-018-29896-4
Rahmanshahi M., Kourani S. N., Golmohammadi S., Baghban H. and Vahed H. - A tunable perfect THz metamaterial absorber with three absorption peaks based on nonstructured graphene, Plasmonics, 16 (5) (2021) 1665-1676. https://doi.org/10.1007/ s11468-021-01432-7. DOI: https://doi.org/10.1007/s11468-021-01432-7
Mostaan S. M. A. and Saghaei H. - A tunable broadband graphene-based metamaterial absorber in the far-infrared region, Opt. Quantum Electron. 53 (2) (2021) 96. https://doi.org/10.1007/s11082-021-02744-y. DOI: https://doi.org/10.1007/s11082-021-02744-y
Bilal R. M. H., Saeed M. A., Choudhury P. K., Baqir M. A., Kamal W., Ali M. M. and Rahim A. A. - Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime, Sci. Rep. 10 (2020) 14035. https://doi.org/10.1038/s41598-020-71032-8. DOI: https://doi.org/10.1038/s41598-020-71032-8
Zhao J., Cheng Q., Chen J., Qi M. Q., Jiang W. X. and Cui T. J. - A tunable metamaterial absorber using varactor diodes, New J. Phys. 15 (4) (2013) 043049. https://doi.org/ 10.1088/1367-2630/15/4/043049. DOI: https://doi.org/10.1088/1367-2630/15/4/043049
Huang X., Chen J. and Yang H. - High-efficiency wideband reflection polarization conversion metasurface for circularly polarized waves, J. Appl. Phys. 122 (4) (2017) 043102. https://doi.org/10.1063/1.4996643. DOI: https://doi.org/10.1063/1.4996643
Shrekenhamer D., Chen W-C. and Padilla W. J. - Liquid crystal tunable metamaterial absorber, Phys. Rev. Lett. 110 (17) (2013) 177403. https://doi.org/10.1103/ PhysRevLett.110.177403. DOI: https://doi.org/10.1103/PhysRevLett.110.177403
Nouman M. T., Kim H. W., Woo J. M., Hwang J. H., Kim D., and Jang J. H. - Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors, Sci. Rep. 6 (2016) 26452. https://doi.org/10.1038/srep26452. DOI: https://doi.org/10.1038/srep26452
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.