Physio-chemical properties of methyl red-degrading strains isolated from textile wastewater

Luong Thi Thu Huong, Dang Mai Anh, Nguyen Minh Thu, Nguyen Nguyen Sy, Ho Thi Loan, Ho Tu Cuong
Author affiliations


  • Luong Thi Thu Huong Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Dang Mai Anh Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Minh Thu Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Nguyen Sy Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Ho Thi Loan Institute of Ecological and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Ho Tu Cuong Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam



methyl red, textile wastewater treatment, Streptomyces cellulosae, Rhodococcus ruber


Methyl red (MR)-reducing strains isolated from textile wastewater were identified and tested for physio-chemical properties. The bacterial colonies picked from the mineral medium supplemented with textile wastewater were transferred onto the mineral medium containing MR for the test. Two strains, namely SYK and STXL2, demonstrating the ability of MR decolorization in the agar medium were selected and purified. The strains SYK and STXL2 incubated in the liquid mineral medium with MR were able to reduce 100 % and 95.5 % of MR after 4 days incubation, respectively. Gram staining of both strains confirmed these two isolates were gram positive. The SYK strain has white, irregular and dry colonies while the STXL2 strain has orange, opaque, circular and glossy colonies. Both strains have short rod shape of cell under SEM images. The two strains were able to grow in the media such as Luria-Bertani medium, Meat-peptone broth, and Nutrient broth. The strain SYK were able to grow quickly in the medium with maltose while the strain STXL2 used glucose as the best carbon source. Biochemical tests showed that both strains had positive reaction in Voges-Proskauer test and negative reactions in lipase, cellulose, amylase, citrate, and gelatin hydrolysis tests. The SYK strain had positive reactions in protease, urease, and ammonia tests while the STXL2 strain had positive reaction in nitrate reduction test. The sequences of 16S rNA genes identified the SYK and STXL2 strains as Streptomyces cellulosae (100 % of similarity) and Rhodococcus ruber (99 % of similarity), and registered in the GenBank via the accessing number MZ414193
 and MZ414194, respectively.


Download data is not yet available.


M. R. H. Mas Haris and K. Sathasivam. - The removal of methyl red from aqueous solutions using banana pseudostem fibers, Am. J. Appl. Sci.. 6 (9) (2009), doi: 10.3844/ajassp.2009.1690.1700. DOI:

M. Zhao, P. F. Sun, L. N. Du, G. Wang, X. M. Jia, and Y. H. Zhao. - Biodegradation of methyl red by Bacillus sp. strain UN2: Decolorization capacity, metabolites characterization, and enzyme analysis, Environ. Sci. Pollut. Res., 21 (9) (2014), doi: 10.1007/s11356-014-2579-3. DOI:

H. Lachheb et al. - Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Appl. Catal. B Environ., 39 (1) (2002), doi: 10.1016/S0926-3373(02)00078-4. DOI:

X. H. Cheng and W. Guo. - The oxidation kinetics of reduction intermediate product of methyl red with hydrogen peroxide, Dye. Pigment., 72 (3) (2007), doi: 10.1016/j.dyepig.2005.09.022. DOI:

M. Azami, M. Bahram, and S. Nouri. - Central composite design for the optimization of removal of the azo dye, Methyl Red, from waste water using Fenton reaction, Curr. Chem. Lett., 2 (2) (2013), doi: 10.5267/j.ccl.2013.03.003. DOI:

M. Panizza and G. Cerisola. - Electrochemical degradation of methyl red using BDD and PbO2 anodes, Ind. Eng. Chem. Res., 47 (18) (2008), doi: 10.1021/ie8001292. DOI:

C. C. de O. Morais, A. J. C. da Silva, M. B. Ferreira, D. M. de Araújo, C. L. P. S. Zanta, and S. S. L. Castro. - Electrochemical Degradation of Methyl Red Using Ti/Ru0.3Ti0.7O2: Fragmentation of Azo Group, Electrocatalysis, 4 (4) (2013), doi: 10.1007/s12678-013-0166-x. DOI:

M. Ghaedi et al. - Activated carbon and multiwalled carbon nanotubes as efficient adsorbents for removal of arsenazo(III) and methyl red from waste water, Toxicol. Environ. Chem., 93 (3) (2011), doi: 10.1080/02772248.2010.540244. DOI:

S. Dadfarnia, A. M. Haji Shabani, S. E. Moradi, and S. Emami. - Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent, Appl. Surf. Sci., 330 (2015) (2015), doi: 10.1016/j.apsusc.2014.12.196. DOI:

D. F. Romdhane, Y. Satlaoui, R. Nasraoui, A. Charef, and R. Azouzi. - Adsorption, modeling, thermodynamic, and kinetic studies of methyl red removal from textile-polluted water using natural and purified organic matter rich clays as low-cost adsorbent, J. Chem., 2020 (2020), doi: 10.1155/2020/4376173. DOI:

P. K. Wong and P. Y. Yuen. - Decolorization and biodegradation of methyl red by Klebsiela pneumoniae RS-13, Water Res., 30 (7) (1996). DOI:

K. O. So, P. K. Wong, and K. ‐Y Chan. - Decolorization and biodegradation of methyl red by Acetobacter liquefaciens, Toxic. Assess., 5 (3) (1990), doi: 10.1002/tox.2540050303. DOI:

M. N. Maniyam, A. L. Ibrahim, and A. E. G. Cass. - Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016, Environ. Technol. (United Kingdom), 41 (1) (2020), doi: 10.1080/09593330.2018.1491634. DOI:

S. U. Jadhav, S. D. Kalme, and S. P. Govindwar. - Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360, Int. Biodeterior. Biodegrad., 62 (2) (2008), doi: 10.1016/j.ibiod.2007.12.010. DOI:

H. B. Bui. - Isolation of cellulolytic bacteria, including actinomycetes, from coffee exocarps in coffee-producing areas in Vietnam, Int. J. Recycl. Org. Waste Agric., 3 (2014), doi: 10.1007/s40093-014-0048-0. DOI:

American Public Health Association, American Water Works Association, and Water Environment Federation. - Part 3000 Metals. 3111 Metals by Flame Atomic Absorption Spectrometry. 3111 B Direct Air - Acetylene Flame Method, Stand. Methods Exam. Water Waste Water (1992).

M. P. Macwilliams and M. Liao. - Luria Broth ( LB ) and Luria Agar ( LA ) Media and Their Uses Protocol, Am. Soc. Microbiol.,(2006).

J. Zhang and L. Zhang. - Improvement of an isolation medium for actinomycetes, Mod. Appl. Sci., 5 (2) (2011), doi: 10.5539/mas.v5n2p124. DOI:

T. A. Hall. - BioEdit: A user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT, Inorganic Chemistry Frontiers, 4 (11) (2017), doi: 10.1039/c7qi00394c. DOI:

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar. - MEGA6: Molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30 (12) (2013), doi: 10.1093/molbev/mst197. DOI:

Q. Li, X. Chen, Y. Jiang, and C. Jiang. - Cultural, Physiological, and Biochemical Identification of Actinobacteria, Actinobacteria - Basics Biotechnol. Appl., (2016), doi: 10.5772/61462. DOI:

O. Adedayo, S. Javadpour, C. Taylor, W. A. Anderson, and M. Moo-Young. - Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant, World J. Microbiol. Biotechnol., 20 (6) (2004), doi: 10.1023/B:WIBI.0000043150.37318.5f. DOI:

J. P. Jadhav, G. K. Parshetti, S. D. Kalme, and S. P. Govindwar. - Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463, Chemosphere, 68 (2) (2007). doi: 10.1016/j.chemosphere.2006.12.087. DOI:

S. Zhao et al.. - Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources, J. Proteomics, 101 (2014), doi: 10.1016/j.jprot.2014.01.031. DOI:

F. Ningsih et al.. - Isolation and 16S rRNA gene sequences analysis of thermophilic Actinobacteria isolated from soil in Cisolok geothermal area, West Java, Indonesia, IOP Conf. Ser. Earth Environ. Sci., 457 (1) (2020), doi: 10.1088/1755-1315/457/1/012015. DOI:

G. Alderson and M. Goodfellow. - The actinomycete-genus Rhodococcus: a home for the ‘rhodochrous’ complex, J. Gen. Microbiol., 100 (1977). DOI:

C. Farkas, R. A. Donoso, F. Melis-Acros, C. Garate-Castro, and D. Perez-pantoja. - Complete genome sequence of Rhodococcus ruber R1, a novel strain showing a broad catabolic potential toward lignin-derived aromatics, Microbiol. Resour. Announc., 5 (15) (2020). doi: 10.1128/MRA.00905-19. DOI:

T. Yang et al.. - Biodegradation of Di-(2-ethylhexyl) phthalate by rhodococcus ruber YC-YT1 in contaminated water and soil, Int. J. Environ. Res. Public Health, (15) (5) (2018), doi: 10.3390/ijerph15050964. DOI:

E. N. Kaparullina, Y. A. Trotsenko, and N. V. Doronina. - Characterization of Rhodococcus wratislaviensis, a New Gram-Positive Facultative Methylotroph, and Properties of Its C 1 Metabolism, Microbiol. Russian Fed. 88 (1) (2019). doi:10.1134/S0026261718060103. DOI:




How to Cite

Luong Thi Thu Huong, Dang Mai Anh, Nguyen Minh Thu, N. Nguyen Sy, Ho Thi Loan, and Ho Tu Cuong, “Physio-chemical properties of methyl red-degrading strains isolated from textile wastewater”, Vietnam J. Sci. Technol., vol. 60, no. 5, pp. 813–824, Nov. 2022.