Investigation of structure and properties of melt-spun NiTi based shape memory alloys

Kieu Xuan Hau, Nguyen Hai Yen, Nguyen Huy Ngoc, Truong Viet Anh, Pham Thi Thanh, Nguyen Van Toan, Tran Dang Thanh, Nugyen Huy Dan
Author affiliations

Authors

  • Kieu Xuan Hau Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Hai Yen Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Huy Ngoc Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Truong Viet Anh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Pham Thi Thanh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Van Toan Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Tran Dang Thanh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nugyen Huy Dan Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16387

Keywords:

Shape memory effect, shape memory alloy, structural transformation, martensitic-austenitic transformation, melt-spinning method.

Abstract

In this work, we investigated the structure, mechanical properties and corrosion resistance of Ti50Ni50 and Ti16.667Zr16.667A16.667Ni25Cu25 (A = Hf, Nb, Co, Cr and Ga) shape memory alloys (SMAs) fabricated by using melt-spinning method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses reveal that the alloy ribbons are partially crystallized with B19' martensitic structure in the added alloys. The crystalline phase formation and the atomic size difference (δ = 4.33 - 10.25%) significantly affect the hardness, tensile strength, tensile strain, elastic modulus and corrosion resistance of the alloys. The hardness of the alloy gradually increases from 583 HV to 873 HV when adding elements in the order of Hf, Nb, Co, Cr and Ga. Tensile strength, tensile strain and elastic modulus simultaneously reach their maximum of 669.2 MPa, 0.899% and 28.82 GPa, respectively, when Hf is added to the alloy. Ga enhances the corrosion resistance of the alloy ribbons more than other additional elements.

Downloads

Download data is not yet available.

References

Otsuka K., Ren X. - Physical metallurgy of Ti-Ni-based shape memory alloys, Prog.Mater. Sci. 50 (2005) 511-679. https: //doi:10.1016/j.pmatsci.2004.10.001. DOI: https://doi.org/10.1016/j.pmatsci.2004.10.001

Jani J., Leary M., Subic A., Gibson M. - A review of shape memory alloy research, applications and opportunities, Materials & Design. 56 (2014) 1078-1113. https:// doi:10.1016/J.MATDES.2013.11.084. DOI: https://doi.org/10.1016/j.matdes.2013.11.084

Figueira N., Silva M., Carmezim J., Fernandes S C. - Corrosion behaviour of NiTi alloy, Electrochim Acta. 54 (2009) 921-926. https://doi:10.1016/j.electacta.2008.08.001. DOI: https://doi.org/10.1016/j.electacta.2008.08.001

Ma J., Karaman. I, Noebe. D. R. - High temperature shape memory alloys, Int.Mater.Rev. 55 (2010) 257-315. https://doi.org/10.1179/095066010X12646898728363 DOI: https://doi.org/10.1179/095066010X12646898728363 https://doi.org/10.1179/095066010X12646898728363">

Thoma P., Boehm J. - Effect of composition on the amount of second phase and transformation temperatures of NixTi90-xHf10 shape memory alloys, Mat Sci Eng A, 273 (1999) 385-389. https://doi.org/10.1016/S0921-5093(99)00303-2. DOI: https://doi.org/10.1016/S0921-5093(99)00303-2 https://doi.org/10.1016/S0921-5093(99)00303-2.">

Fu B., Feng K, Zhuguo L. - Study on the effect of Cu addition on the microstructure and properties of NiTi alloy fabricated by laser cladding, Mater. Lett. 220 (2018) 148-151. https://doi.org/10.1016/j.matlet. 2018.03.030. DOI: https://doi.org/10.1016/j.matlet.2018.03.030 https://doi.org/10.1016/j.matlet. 2018.03.030.">

Humbeeck V J. - High temperature shape memory alloys, J. Eng. Mater. Technol 121 (1999) 98-101. https://doi.org/10.1177/1045389X06063922. DOI: https://doi.org/10.1115/1.2816006 https://doi.org/10.1177/1045389X06063922.">

Yeh J., Chen S., Lin S., Gan J., Chin T., Shun T., Tsau C. - Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303. http://doi.wiley.com/10.1002/adem.200300567. DOI: https://doi.org/10.1002/adem.200300567 http://doi.wiley.com/10.1002/adem.200300567.">

Firstov G., Timoshevski A., Kosorukova T., Koval Y., Matviychuk Y., Verhovlyuk P. - Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation, Matec. Web. Confer. 33 (2015) 06006. http://doi:10.1051/matecconf/20153306006 DOI: https://doi.org/10.1051/matecconf/20153306006

Firstov G., Kosorukova T., Koval Y., Odnosum V. - High entropy shape memory alloys, Proceedings of International Conference on Martensitic Transformations ICOMAT-2014, Vol 2, 2015 pp. 499-504. DOI: https://doi.org/10.1016/j.matpr.2015.07.335

Firstov G., Kosorukova T., Koval Y., Verhovlyuk P. - Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials, Shap. Mem. Superelasticity. 1 (2015) 400-407. http://doi:10.1007/s40830-015-0039-7. DOI: https://doi.org/10.1007/s40830-015-0039-7

Chen H C., Chen J Y. - Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy, Scrip. Mater, 162 (2019) 185-189. http://doi:10.1016/j.scriptamat.2018.11.023 DOI: https://doi.org/10.1016/j.scriptamat.2018.11.023

Chen H C., Chen J Y., Shen J J. - Microstructure and Mechanical Properties of (TiZrHf)50(NiCoCu)50 High Entropy Alloys, Met. Mater. Inter. 26 (2020) 617-629. http://doi:10.1007/s12540-019-00383-3.

Canadinc D., Trehern W., Ma J., Karaman I., Sun F., Chaudhry Z. - Ultra-high temperature multi-component shape memory alloys, Scrip. Mater. 158 (2019) 83-87 (2019).http://doi:10.1016/j.scriptamat.2018.08.019. DOI: https://doi.org/10.1016/j.scriptamat.2018.08.019

Dan H N., Thanh D T., Thanh T P., Ngoc H N., Nuoi D D., Yen H Y., Dai V P. - Investigation of Shape Memory Effect in Ni-Ti Based Alloys, Proceedings of The 10th National Conference of Solid State Physics and Materials Science, Quy Nhon University, 2019, pp. 152-155.

Zhang Y., Zhou Y., Lin J., Chen G., Liaw P. - Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mat. 10 (2008) 534-538. http://doi:10.1002/adem.200700240. DOI: https://doi.org/10.1002/adem.200700240

James S G., - Lange’s Handbook of Chemistry, McGraw-Hill, New York, 2004.

Chen. H. C, Chen. J. Y, Shen. J. Y. - Microstructure and Mechanical Properties of (TiZrHf)50(NiCoCu)50 High Entropy Alloys, Met. Mater. Inter. 26 (2020) 617-629. https://doi.org/10.3390/e21101027 DOI: https://doi.org/10.1007/s12540-019-00383-3 https://doi.org/10.3390/e21101027">

Senkov O N., Scott J M., Senkova S V., Miracle D B., Woodward C F. - Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys. Compd. 509 (2011) 6043-6048. https://doi.org/10.1016/j.jallcom.2011.02.171. DOI: https://doi.org/10.1016/j.jallcom.2011.02.171 https://doi.org/10.1016/j.jallcom.2011.02.171.">

Senkov. O, Senkova. S, Miracle. D, Woodward. C. - Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system, Mater. Scie. Eng A, 565 (2013) 51-62. http://doi:10.1016/j.msea.2012.12.018 DOI: https://doi.org/10.1016/j.msea.2012.12.018

Downloads

Published

30-12-2022

How to Cite

[1]
K. X. Hau, “Investigation of structure and properties of melt-spun NiTi based shape memory alloys”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 1023–1031, Dec. 2022.

Issue

Section

Materials

Most read articles by the same author(s)