Investigation of structure and properties of melt-spun NiTi based shape memory alloys
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16387Keywords:
Shape memory effect, shape memory alloy, structural transformation, martensitic-austenitic transformation, melt-spinning method.Abstract
In this work, we investigated the structure, mechanical properties and corrosion resistance of Ti50Ni50 and Ti16.667Zr16.667A16.667Ni25Cu25 (A = Hf, Nb, Co, Cr and Ga) shape memory alloys (SMAs) fabricated by using melt-spinning method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses reveal that the alloy ribbons are partially crystallized with B19' martensitic structure in the added alloys. The crystalline phase formation and the atomic size difference (δ = 4.33 - 10.25%) significantly affect the hardness, tensile strength, tensile strain, elastic modulus and corrosion resistance of the alloys. The hardness of the alloy gradually increases from 583 HV to 873 HV when adding elements in the order of Hf, Nb, Co, Cr and Ga. Tensile strength, tensile strain and elastic modulus simultaneously reach their maximum of 669.2 MPa, 0.899% and 28.82 GPa, respectively, when Hf is added to the alloy. Ga enhances the corrosion resistance of the alloy ribbons more than other additional elements.
Downloads
References
Otsuka K., Ren X. - Physical metallurgy of Ti-Ni-based shape memory alloys, Prog.Mater. Sci. 50 (2005) 511-679. https: //doi:10.1016/j.pmatsci.2004.10.001. DOI: https://doi.org/10.1016/j.pmatsci.2004.10.001
Jani J., Leary M., Subic A., Gibson M. - A review of shape memory alloy research, applications and opportunities, Materials & Design. 56 (2014) 1078-1113. https:// doi:10.1016/J.MATDES.2013.11.084. DOI: https://doi.org/10.1016/j.matdes.2013.11.084
Figueira N., Silva M., Carmezim J., Fernandes S C. - Corrosion behaviour of NiTi alloy, Electrochim Acta. 54 (2009) 921-926. https://doi:10.1016/j.electacta.2008.08.001. DOI: https://doi.org/10.1016/j.electacta.2008.08.001
Ma J., Karaman. I, Noebe. D. R. - High temperature shape memory alloys, Int.Mater.Rev. 55 (2010) 257-315. https://doi.org/10.1179/095066010X12646898728363 DOI: https://doi.org/10.1179/095066010X12646898728363
Thoma P., Boehm J. - Effect of composition on the amount of second phase and transformation temperatures of NixTi90-xHf10 shape memory alloys, Mat Sci Eng A, 273 (1999) 385-389. https://doi.org/10.1016/S0921-5093(99)00303-2. DOI: https://doi.org/10.1016/S0921-5093(99)00303-2
Fu B., Feng K, Zhuguo L. - Study on the effect of Cu addition on the microstructure and properties of NiTi alloy fabricated by laser cladding, Mater. Lett. 220 (2018) 148-151. https://doi.org/10.1016/j.matlet. 2018.03.030. DOI: https://doi.org/10.1016/j.matlet.2018.03.030
Humbeeck V J. - High temperature shape memory alloys, J. Eng. Mater. Technol 121 (1999) 98-101. https://doi.org/10.1177/1045389X06063922. DOI: https://doi.org/10.1115/1.2816006
Yeh J., Chen S., Lin S., Gan J., Chin T., Shun T., Tsau C. - Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303. http://doi.wiley.com/10.1002/adem.200300567. DOI: https://doi.org/10.1002/adem.200300567
Firstov G., Timoshevski A., Kosorukova T., Koval Y., Matviychuk Y., Verhovlyuk P. - Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation, Matec. Web. Confer. 33 (2015) 06006. http://doi:10.1051/matecconf/20153306006 DOI: https://doi.org/10.1051/matecconf/20153306006
Firstov G., Kosorukova T., Koval Y., Odnosum V. - High entropy shape memory alloys, Proceedings of International Conference on Martensitic Transformations ICOMAT-2014, Vol 2, 2015 pp. 499-504. DOI: https://doi.org/10.1016/j.matpr.2015.07.335
Firstov G., Kosorukova T., Koval Y., Verhovlyuk P. - Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials, Shap. Mem. Superelasticity. 1 (2015) 400-407. http://doi:10.1007/s40830-015-0039-7. DOI: https://doi.org/10.1007/s40830-015-0039-7
Chen H C., Chen J Y. - Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy, Scrip. Mater, 162 (2019) 185-189. http://doi:10.1016/j.scriptamat.2018.11.023 DOI: https://doi.org/10.1016/j.scriptamat.2018.11.023
Chen H C., Chen J Y., Shen J J. - Microstructure and Mechanical Properties of (TiZrHf)50(NiCoCu)50 High Entropy Alloys, Met. Mater. Inter. 26 (2020) 617-629. http://doi:10.1007/s12540-019-00383-3.
Canadinc D., Trehern W., Ma J., Karaman I., Sun F., Chaudhry Z. - Ultra-high temperature multi-component shape memory alloys, Scrip. Mater. 158 (2019) 83-87 (2019).http://doi:10.1016/j.scriptamat.2018.08.019. DOI: https://doi.org/10.1016/j.scriptamat.2018.08.019
Dan H N., Thanh D T., Thanh T P., Ngoc H N., Nuoi D D., Yen H Y., Dai V P. - Investigation of Shape Memory Effect in Ni-Ti Based Alloys, Proceedings of The 10th National Conference of Solid State Physics and Materials Science, Quy Nhon University, 2019, pp. 152-155.
Zhang Y., Zhou Y., Lin J., Chen G., Liaw P. - Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mat. 10 (2008) 534-538. http://doi:10.1002/adem.200700240. DOI: https://doi.org/10.1002/adem.200700240
James S G., - Lange’s Handbook of Chemistry, McGraw-Hill, New York, 2004.
Chen. H. C, Chen. J. Y, Shen. J. Y. - Microstructure and Mechanical Properties of (TiZrHf)50(NiCoCu)50 High Entropy Alloys, Met. Mater. Inter. 26 (2020) 617-629. https://doi.org/10.3390/e21101027 DOI: https://doi.org/10.1007/s12540-019-00383-3
Senkov O N., Scott J M., Senkova S V., Miracle D B., Woodward C F. - Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys. Compd. 509 (2011) 6043-6048. https://doi.org/10.1016/j.jallcom.2011.02.171. DOI: https://doi.org/10.1016/j.jallcom.2011.02.171
Senkov. O, Senkova. S, Miracle. D, Woodward. C. - Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system, Mater. Scie. Eng A, 565 (2013) 51-62. http://doi:10.1016/j.msea.2012.12.018 DOI: https://doi.org/10.1016/j.msea.2012.12.018
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.