Effect of la on the structure and characteristics of multiferroic BiFeO3
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16385Keywords:
Multiferroic, magnetic property, ferroelectric property, optical propertyAbstract
Bi1-xLaxFeO3 (x = 0, 0.1, 0.2, 0.3) ceramics with a particle size of about 100 nm were prepared by high energy ball milling method and annealed at 800 oC in air for 6 h. Effects of La substitution on the structural, magnetic, ferroelectric, and optical properties of BiFeO3 were examined in detail and systematically. The results indicate that partial replacement of Bi3+ by La3+ contributes to the formation of hexagonal single phase. Due to the increase of La3+ ion content, the values of the remnant polarization (Pr) and the coercive field (Ec) are improved, the maximum values achieved is about 0.0036 µC/cm2 and 0.57 kV/cm, respectively, for sample x = 0.2. For increasing La doped content in BiFeO3, the value of coercivity magnetic field (Hc) tends to decrease gradually. The optical property of Bi1-xLaxFeO3 ceramics was studied by analyzing their UV-vis absorption spectra. The value of band gap energy (Eg) of materials decreases from 1.86 to 1.78 eV, corresponding to x = 0 - 0.2, and the broad absorption band in the wavelength range of 660-700 nm. The observed characteristics of La-doped BiFeO3 may be helpful for the further search for high-performance lead-free multiferroic magnetoelectric materials, oriented toward applications in solar cells, optoelectronic devices, or in the environmental pollution treatment technology field by the photocatalytic reaction.
Downloads
References
Wang N., Luo X., Han L., Zhang Z., Zhang R., Olin H. & Yang Y. - Structure, performance, and application of BiFeO3, Nano-Micro Lett. 12 (2020) 81. https://doi.org/10.1007/s40820-020-00420-6.
Ihlefeld J. F., Podraza N. J., Liu Z. K., Rai R. C., Xu X., Heeg T., Chen Y. B., Li J., Collins R. W., Musfeldt J. L., Pan X. Q., Schubert J., Ramesh R., and Schlom D. G. - Optical band gap of BiFeO3 grown by molecular - beam epitaxy, Appl. Phys. Lett. 92 (14) (2008) 142908. https://doi.org/10.1063/1.2901160.
Oliveira R. C., Volnistem E. A., Astrath E. A. C., Dias G. S., Santos I. A., Garcia D., Eiras J. A. - La Doped BiFeO3 ceramics synthesized under extreme conditions: Enhanced magnetic and dielectric properties, Ceram. Int. 47 (14) (2021) 20407-20412. https://doi.org/10.1016/j.ceramint.2021.04.049.
Liu Y., Tan G., Ren X., Li J., Xue M., Ren H. Xia A., Liu W. - Electric field dependence of ferroelectric stability in BiFeO3 thin films co-doped with Er and Mn, Ceram. Int. 46 (11) (2020) 18690-18697. https://doi.org/10.1016/j.ceramint.2020.04.183.
Chakrabarti K., Das K., Sarkar B., Ghosh S., De S. K., Sinha G., Lahtinen J. - Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles, Appl. Phys. Lett. 101 (4) (2012) 042401. https://doi.org/10.1063/1.4738992.
Liu J., Li M., Pei L., Wang J., Hu Z., Wang X., Zhao X. - Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles, Appl. Phys. Lett. 101 (4) (2012) 042401. https://doi.org/10.1063/1.4738992.
Sati P. C., Arora M., Chauhan S., Kumar M., Chhoker S. - Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics, J. Phys. Chem. Solids. 75 (1) (2014) 105-108. http://dx.doi.org/10.1016/j.jpcs.2013.09.003.
Sakar M., Balakumar S., Saravanan P., Bharathkumar S. - Compliments of confinements: substitution and dimension induced magnetic origin and band bending mediated photocatalytic enhancements in Bi1-xDyxFeO3 particulate and fiber nanostructures, Nanoscale 7 (24) (2015) 10667-10679. https://doi.org/10.1039/C5NR01079A.
Gu Y., Zhou Y., Zhang W., Guo C., Zhang X., Zhao J., Zhang Y., and Zheng H. - Optical and magnetic properties of Sm-doped BiFeO3 nanoparticles around the morphotropic phase boundary region, AIP Advances 11 (4) (2021) 045223. https://doi.org/10.1063/5.0042485.
Gao F., Chen X. Y., Yin K. B., Dong S., Ren Z. F., Yuan F., Yu T., Zou J., Liu M. - Visible-Light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Adv. Mater. 19 (19) (2007) 2889-2892. https://doi.org/10.1002/adma.200602377.
Irfan S., Zhuanghao Z., Li F., Chen Y. X., Liang G. X., Luo J. T., Ping F. - Critical review: Bismuth ferrite as an emerging visible light active nanostructured photocatalyst, J. Mater. Res. Technol. 8 (6) (2019) 6375-6389. https://doi.org/10.1016/j.jmrt.2019.10.004.
Chen Z., Wu Y., Wang X., Jin W., Zhu C. - Ferromagnetism and enhanced photocatalytic activity in Nd doped BiFeO3 nanopowders, J. Mater. Sci. Mater. Electron. 26 (12) (2015) 9929–9940. https://doi.org/10.1007/s10854-015-3669-9.
Mocherla P. S. V., Karthik C., Ubic R., Ramachandra Rao M. S., and Sudakar C. - Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects, Appl. Phys. Lett 103 (2) (2013) 022910. https://doi.org/10.1063/1.4813539.
Jiang Q., Ning H., Zhang Q., Cain M., Reece M. J., Yan H. - Active ferroelectricity in nanostructured multiferroic BiFeO3 bulk ceramics, J. Mater. Chem. C. 1 (36) (2013) 5628-5631. https://doi.org/10.1039/C3TC31140F.
Haruna A., Abdulkadir I., Idris S. O. - Effect of annealing temperature on the synthesis and photocatalytic properties of Bi0.65K0.2Ba0.15FeO3 perovskite-like nanoparticle synthesized by sol-gel method, Beni-Suef Univ. J. Basic Appl. Sci. 6 (2020) 03237. https://doi.org/10.1186/s43088-020-0033-9.
Lazenka V. V., Ravinski A. F., Makoed, Vanacken J., Zhang G., Moshchalkov V. V. - Weak ferromagnetism in La-doped BiFeO3 multiferroic thin films, J. Appl Phys. 111 (12) (2012) 123916. https://doi.org/10.1063/1.4730896.
Sati P.C., Arora M., Chauhan S., Kumar M., Chhoker S. - Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics, Ceram. Int. 40 (6) (2014) 7805-7816. http://dx.doi.org/10.1016/j.ceramint.2013.12.124.
Daneshmand N., Shokrollahi H., Lavasani S.A.N.H. - Enhanced magnetic and dielectric properties in bismuth ferrite (Bi2−xSrxFe4O9) derived by the reverse chemical co-precipitation method, J. Mater. Sci.: Mater. Electron. 29 (2018) 3201–3209. https://doi.org/10.1007/s10854-017-8255-x.
Kumari A., Kumari K., Ankush V., Alvi P. A., and Kumar S. - Electrical and Structural Properties of La doped BiFeO3, AIP Conf. Proc. 2220 (1) (2020) 040032. https://doi.org/10.1063/5.0001563.
Gaur A., Singh P., Choudhary N., Kumar D., Shariq M., Singh K., Kaur N., and Kaur D. - Structural, optical and magnetic properties of Nd-doped BiFeO3 thin films prepared by pulsed laser deposition, J. Phys. B. 406 (10) (2011) 1877-1882. http://dx.doi.org/10.1016/j.physb.2011.02.046.
Mardani R. - The synthesis of Ba2+-doped multiferroic BiFeO3 nanoparticles using co-precipitation method in the presence of various surfactants and the investigation of structural and magnetic features, Mod. Phys. Lett. B 31 (15) (2017) 1750169. https://doi.org/10.1142/S021798491750169X.
Lam S. M, Sin J., Mohamed. A.R. - A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: a mini review, Mater. Res. Bull. 90 (2017) 15–30. https://doi.org/10.1016/j.materresbull.2016.12.052.
Pedro-García F., Sanchez-De Jesús F., Cortes-Escobedo C. A., Barba-Pingarron A. M., Bolarín-Miro A. - Mechanically assisted synthesis of multiferroic BiFeO3: Effect of synthesis parameters, J. Alloys Compd. 711 (2017) 77-84. http://dx.doi.org/10.1016/j.jallcom.2017.03.292.
Jaffari Z. H., Lam S. M., Sin J. C., Zeng H., Rahman M. A. - Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination, Separ. Purif. Technol. 236 (2020) 116195. https://doi.org/10.1016/j.seppur.2019.116195.
Muneeswaran M. and Giridharan N. V. - Effect of Dy-substitution on the structural, vibrational, and multiferroic properties of BiFeO3 nanoparticles, J. Appl. Phys. 115 (21), (2014) 214109. https://doi.org/10.1063/1.4881529.
Sando D., Carrétéro C., Grisolia M. N., Barthélémy A., Nagarajan V., and Bibes M. - Revisiting the optical band gap in epitaxial BiFeO3 thin films, Adv. Optical Mater. 6 (2) (2017) 1700836. https://doi.org/10.1002/adom.201700836.
Bhushan B., Basumallick A., Bandopadhyay S. K., Vasanthacharya N. Y., Das D. - Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles, J. Phys. D: Appl. Phys. 42 (6) (2009) 065004. https://doi.org/10.1088/0022-3727/42/6/065004.
Mukherjee A., Hossain S. M., Pal M., Basu S. - Effect of doping on optical properties of multiferroics BiFeO3 nanoparticles, Appl. Nanosci. 2 (2012) 305. https://doi.org/10.1007/s13204-012-0114-8.
Haruna A., Abdulkadir I., Idris S. O., Heliyon. - Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes, Heliyon. 6 (2020) 03237. https://doi.org/10.1016/j.heliyon.2020.e03237.
Bhushan B., Basumallick A., Vasanthacharya N. Y., Kumar S., Das D. - Sr induced modification of structural, optical and magnetic properties in Bi1−xSrxFeO3 (x = 0, 0.01, 0.03, 0.05 and 0.07) multiferroic nanoparticles, Solid State Sci. 12 (7) (2010) 1063-1069. https://doi.org/10.1016/j.solidstatesciences.2010.04.026.
Chen P., Xu X., Koenigsmann C., Santulli A. C., Wong S. S., Musfeld J. L. - Size-Dependent infrared phonon modes and ferroelectric phase transition in BiFeO3 nanoparticles, Nano Lett. 10 (11) (2010) 4526-4532. https://doi.org/10.1021/nl102470f.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.