A METHOD OF BEARING FAULT DIAGNOSIS USING SINGULAR SPECTRUM ANALYSIS, SPARSE FILTERING AND ANFIS
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/33/3/10802Abstract
Bearing is an important machine detail participating in almost mechanical systems. Estimating online its operating condition to exploit actively the systems, therefore, is one of the most urgent requirements. This paper presents an online bearing damage identifying method named ASBDIM based on ANFIS (Adaptive Neuro-Fuzzy Inference System), Singular Spectrum Analysis (SSA) and sparse filtering. This is an online estimating process operated via two phases, offline and online one. In the offline period, by using SSA and sparse filtering, a database signed Off_DaB is built whose inputs are features extracted from the measured data stream typed big data, while its outputs are values encoding the surveyed bearing damage statuses. The ANFIS is then employed to identify the dynamic response of the mechanical system corresponding to the bearing damage statuses reflected by the Off_DaB. In the online period, first, at each estimating time, another database called On_DaB is established using the way similar to the one used for building the Off_DaB. The On_DaB participates as inputs of the ANFIS to generate its outputs which are then compared with the corresponding encoded outputs to specify bearing real status at this time. Survey results based on different data sources showed the effectiveness of the proposed method.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.