OXIDATION RESISTANCE AND MICROSTRUCTURE OF Pt AND PtIr DIFFUSION COATINGS ON Ni BASED SINGLE CRYSTAL SUPERALLOYS BY ELECTROPLATING METHOD
Abstract
Keywords
Full Text:
PDFReferences
Darolia, R., Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. International Materials Reviews. 58(6), (2013): p. 315-348.
Rajendran, R., Gas turbine coatings – An overview. Engineering Failure Analysis. 26(0), (2012): p. 355-369.
Tolpygo, V.K. and D.R. Clarke, Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation. Acta Materialia. 48(13), (2000): p. 3283-3293.
Zhang, Y., et al., Interdiffusion behavior of Pt-diffused γ + γ′ coatings on Ni-based superalloys. Surface and Coatings Technology. 203(5–7), (2008): p. 417-421.
Selezneff, S., et al., Thermal cycling behavior of EBPVD TBC systems deposited on doped Pt-rich γ–γ′ bond coatings made by Spark Plasma Sintering (SPS). Surface and Coatings Technology. 206(7), (2011): p. 1558-1565.
Izumi, T., et al., Effects of targeted γ-Ni + γ′-Ni3Al-based coating compositions on oxidation behavior. Surface and Coatings Technology. 202(4–7), (2007): p. 628-631.
Wu, R.T., X. Wang, and A. Atkinson, On the interfacial degradation mechanisms of thermal barrier coating systems: Effects of bond coat composition. Acta Materialia. 58(17), (2010): p. 5578-5585.
He, D., et al., Manufacturing, structure and high temperature corrosion of palladium-modified aluminide coatings on nickel-base superalloy M38. Thin Solid Films. 376(1–2), (2000): p. 144-151.
Murakami, H., T. Yano, and S. Sodeoka, Process Dependence of Ir-Based Bond Coatings. MATERIALS TRANSACTIONS. 45(9), (2004): p. 2886-2890.
Yamabe-Mitarai, Y. and H. Aoki, Solid-solution hardening of Ir by Pt and Ni. Materials Letters. 56(5), (2002): p. 781-786.
Wu, F., H. Murakami, and A. Suzuki, Development of an iridium–tantalum modified aluminide coating as a diffusion barrier on nickel-base single crystal superalloy TMS-75. Surface and Coatings Technology. 168(1), (2003): p. 62-69.
Wu, Y.N., et al., Hot corrosion behavior of Pt-Ir modified aluminide coatings on the nickel-base single crystal superalloy TMS-82+. Journal of Materials Research. 22(1), (2007): p. 206-216.
Suzuki, A., et al., Oxidation behavior of Pt-Ir modified aluminized coatings on Ni-base single crystal superalloy TMS-82+. Oxidation of Metals. 68(1-2), (2007): p. 53-64.
Hayashi, S., et al., α-NiPt(Al) and phase equilibria in the Ni–Al–Pt system at 1150 °C. Acta Materialia. 53(11), (2005): p. 3319-3328.
Stacy, J.P., et al., Synthesis and oxidation performance of Al-enriched γ + γ′ coatings on Ni-based superalloys via secondary aluminizing. Surface and Coatings Technology. 202(4–7), (2007): p. 632-636.
Terock, M., et al., Synthesis and characterization of a Pt–Al–Cr–Ni γ/γ′-coating on the Ni-based superalloy CMSX‐4. Surface and Coatings Technology. 236, (2013): p. 347-352.
Audigié, P., et al., Observation and modeling of α-NiPtAl and Kirkendall void formations during interdiffusion of a Pt coating with a γ-(Ni-13Al) alloy at high temperature. Surface and Coatings Technology. 260, (2014): p. 9-16.
DOI: https://doi.org/10.15625/2525-2518/57/6/13794 Display counter: Abstract : 19 views. PDF : 6 views.
Refbacks
- There are currently no refbacks.
Index: Google Scholar; Crossref; VCGate; Asean Citation Index
Published by Vietnam Academy of Science and Technology