Investigation of the formation of Cu4SnS4 using mechanical alloying and heat-treatment for thermoelectric conversion

Le Van Dai, Nguyen Tien Anh, Nguyen Thi Kieu Oanh, Le Thi Bang, Bui Duc Long
Author affiliations

Authors

  • Le Van Dai School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Bạch Mai, Ha Noi, Viet Nam
  • Nguyen Tien Anh School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Bạch Mai, Ha Noi, Viet Nam
  • Nguyen Thi Kieu Oanh School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Bạch Mai, Ha Noi, Viet Nam
  • Le Thi Bang School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Bạch Mai, Ha Noi, Viet Nam https://orcid.org/0000-0002-2518-5473
  • Bui Duc Long School of Materials Science and Engineering, Hanoi University of Science and Technology https://orcid.org/0000-0003-1792-7956

DOI:

https://doi.org/10.15625/2525-2518/19189

Keywords:

Thermoelectric materials, Chalcogenide, Cu4SnS4, Synthesis, Spark plasma sintering

Abstract

Thermoelectric (TE) material is capable of directly converting heat energy into electricity without emitting gas. Cu-based chalcogenide materials, in particularly Cu4SnS4 are potential candidates for TE application due to their low thermal conductivity ( ), relatively high Sebeeck coefficient (S) and suitable bandgap energy, and composition of earth abundant, low cost, and less toxic elements.  In this research, Cu4SnS4 was synthesized using mechanical alloying method from Cu, Sn and S powders for different milling duration from 0 hour, 8 hours, 16 hours, and 20 hours in high purity Ar atmosphere. The 16 h-milling powder was heat-treated for investigation the phase transformation and sintered using spark plasma sintering (SPS) for TE properties characterization. As the results, the particle sizes of milled powders were rapidly decreased after 8 h milling and slightly decreased with further increasing in milling duration up to 16 hours and 20 hours. Cu3SnS4 began to form after milling for 8 hours and completed formation at 16 hours. With prolonged milling duration to 20 hours, it was still not possible to detect any trace formation of Cu4SnS4.  After heat-treatment at 673 K, the Cu3SnS4 phase of 16 h-milling powder was completely converted to Cu4SnS4. The electrical conductivity ( , Seebeck coefficient and power factor (PF) of sintered Cu4SnS4 sample increased with the increase of measured temperature, reaching maximum values of 1207 S m-1­, 250 μV K-1 and  75.5 μW K-2 m-1 at 723 K,  respectively

Downloads

Download data is not yet available.

References

1. Fitriani, Ovik R., Long B. D., Barma M.C., Riaz M., Sabri M.F.M., Said S.M., Saidur R. - A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery, Renew. Sust. Energ. Rev. 64 (2016) 635-659. https://doi.org/10.1016/j.rser. 2016.06.035.

2. Zeb K., Ali S.M., Khan B., Mehmood C.A., Tareen N., Din W., Farid U., Haider A. - A servey on weast heat recovery: Electricpower generation and potential prospects within Pakistan, Renew. Sust. Energ. Rev. 75 (2017) 1142-1155. https://doi.org/ 10.1016/j.rser.2016.11.096.

3. Xiao Z., Li-D. Z. - Thermoelectric materials: Energy conversion between heat and electricity, J. Materiomics 1 (2015) 92-105. http://dx.doi.org/10.1016/j.jmat.2015.01.001.

4. Cátia R.S. R., Telmo M., Ana L. P., Benedita C., Francisco S. C., André M. P. - Recovery of thermal energy released in the composting process and their conversion into electricity utilizing thermoelectric generators, Appl. Therm. Eng. 138 (2018) 319–324. https://doi.org/10.1016/j.applthermaleng.2018.04.046.

5. Yulong Zh., Wenjie L., Xianglin Zh., Yulin W., Ding L., Yanzhe L., Minghu G. - Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery, Appl.Therm. Eng. 239 (2024) 122180. https://doi.org/10.1016/ j.applthermaleng.2023.122180.

6. Yuncheng L., Junhui L., Lianbo M., Suilin W., Huixing Zh. - Waste heat recovery from exhausted gas of a proton exchange membrane fuel cell to produce hydrogen using thermoelectric generator, Appl. Energy 334 (2023) 120687. https://doi.org/10.1016/ j.apenergy.2023.120687.

7. Yasin Ö., Emrah D. - Solar thermal waste heat energy recovery in solar distillation systems by using thermoelectric generators, Eng. Sci. Technol. Intern. J. 40 (2023) 101362.

8. Martin J.,Tritt, T., Uher C. - High temperature Seebeck coefficient metrology, J. Appl. Phys. 108 (2010) 121101. http://doi.org/10.1063/1.3503505.

9. Vladimir J. - Thermoelectric Waste Heat Recovery Program for Passenger Vehicles, U. S. Department of Energy 18 (2016).

10. Nesrine J., Ayda B., Jens M., Brahim M., Fares T., Mohammed I. - A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Rep. 6(7) (2020) 264-287. https://doi.org/10.1016/j.egyr.2019.12.011

11. Chang L., Fengxing J., Congcong L., Peipei L., Jingkun X. - Present and future thermoelectric materials toward wearable energy harvesting, Appl. Mater. Today 15 (2019) 543-557. https://doi.org/10.1016/j.apmt.2019.04.007.

12. Bui D. L., Le Hong T, Nguyen H. H., Koichiro S., Katsuaki H., Tran Q. M. N., Wojciech K., Michitaka O. - Thermoelectric quaternary sulfide Cu2+xZn1-xSnS4 (x = 0–0.3): Effects of Cu substitution for Zn, Mater. Sci. Eng. B 272 (2021) 115353. https://doi.org/10.1016/j.mseb.2021.115353.

13. Mohammad H., Kasim R., Mulla R. - Copper Sulfides: Earth Abundant and Low-Cost Thermoelectric Materials, Energy Technol. 7 (7) (2018) 1800850. http://doi.org/ 10.1002/ente.201800850.

14. Koichiro S., and Toshiro T. - Cu-S based synthetic minerals as efficient thermoelectric materials at medium temperatures, APL Mater. 4(10) (2016) 104503. http://doi.org/10.1063/1.4955398.

15. Amitava C., Sudip M., Hooman Y., Seng H.L., Yew S. H., et al. - New insights into the structure, chemistry, and properties of Cu4SnS4, J. Solid State Chem. 253 (2017) 192-201. https://doi.org/10.1016/j.jssc.2017.05.033.

16. Abdul B., Jiwu X., Murtaza G., Lei W., Abdul H., Wang G., Jiyan Y. D. - Recent advances, challenges, and perspective of copper-based liquid-like thermoelectric chalcogenides: A review, Eco Mat. (2023) 5:e12391, https://doi.org/10.1002/eom2.12391.

17. Vasudeva R. M. R., Mohan R. P., Phaneendra R. G., Sreedevi G., Kishore Kumar Yarragudi B. R., Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance, J. Ind. Eng. Chem. 67 (2019) 39-74. https://doi.org/ 10.1016/j.jiec.2019.03.035

18. Fiechter S., Martinez M., Schmidt G., Henrion W., Tomm Y. - Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S, J. Phys. 64 (2003) 1859-1862.

19. Akitoshi S., Naoyuki N., Youhei K., Masaki Wa., Takuji K., Ryoji A. - Presence of a Doubly-Splitting Site and Its Effect on Thermoelectric Properties of Cu4SnS4, Mater. Trans. 56 (6) (2015) 858-863. doi:10.2320/matertrans.E-M2015804.

20. Bui D. L., Nguyen V. K., Duong N. B., Nguyen H. H., Thermoelectric properties of quaternary chalcogenide Cu2ZnSnS4 synthesised by mechanical alloying, Powder Metall 63 (2020) 220-226. https://doi.org/10.1080/00325899.2020.1783103.

21. Suryanarayana C. - Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-184.

22. Maheskumar V., Balaji G., Vidhya B. - Investigations on the structural, optical and visible light photocatalytic activity of Cu3SnS4 prepared by mechanical alloying, J. Mater .Sci. Mater. Electron. 28 (2017) 19081-19089. DOI 10.1007/s10854-017-7862-x.

23. Laszlo T. - Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47 (2002) 355-414.

24. Long B. D., Zuhailawati H., Umemoto M., Todaka Y., Othman R. - Effect of ethanol on the formation and properties of a Cu–NbC composite, J. Alloys Compd. 503 (2010) 228-232. doi:10.1016/j.jallcom.2010.04.243.

25. William D. C. Jr., David G. R. - Materials Science and Engineering an Introduction, 8th edition, John Wiley & Sons Inc, 2009.

26. Min L. L., Fu Q. H., Li D. Chen., I-Wei C. - A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 „Q = S, Se…, Appl. Phys. Lett. 94 (2009) 202103. DOI: 10.1063/1.3130718.

27. Zhen Zh., Huiwen Zh., Yifeng W., Xiaohui H., Yinong L., Changchun Ch, Lin P, Chunhua L. - Role of crystal transformation on the enhanced thermoelectric performance in Mndoped Cu2SnS3, J. Alloys. Coumpd. 780 (2019) 618-625. https://doi.org/ 10.1016/j.jallcom.2018.11.329

28. Aijuan Zh., Bin Zh., Wei L., Dandan X., Hongxia O., Xiaodong H., Jiyan D., Xu L., Guang H., Guoyu W., Xiaoyuan Zh. - Twin Engineering in Solution-Synthesized Nonstoichiometric Cu5FeS4 Icosahedral Nanoparticles for Enhanced Thermoelectric Performance, Adv. Funct. Mater. 2018, 1705117. DOI: 10.1002/adfm.201705117.

29. Yawei Sh., Chao L., Rong H., Ruoming T., Yang Y., Lin P., Kunihito K., Ruizhi Zh., Chunlei W., Yifeng W. - Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties, Sci. Rep. 6 (2016) 32501. https://doi.org/10.1038/ srep32501.

30. Yuanbo Y., Pengzhan Y., Jinzhi W., Xianglian L., Zhengliang D., Yimin Ch. J. C. - Enhancing thermoelectric performance of Cu3SnS4-based solid solutions through coordination of the Seebeck coefficient and carrier concentration, J. Mater. Chem. A 5 (2017) 18808-18815. https://doi.org/10.1039/C7TA05253G.

Downloads

Published

12-12-2025

How to Cite

[1]D. Le, T. A. Nguyen, K. O. Nguyen Thi, B. Le, and L. Bui, “Investigation of the formation of Cu4SnS4 using mechanical alloying and heat-treatment for thermoelectric conversion”, Vietnam J. Sci. Technol., vol. 63, no. 6, pp. 1137–1146, Dec. 2025.

Issue

Section

Materials

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.