Preparation and in vitro antibacterial activity against Pantoea stewartii causing jacfruit bronzing disease of nano ZnO/oligochitosan-iodine complex

Author affiliations

Authors

  • Bui Duy Du Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B, TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Viet Nam https://orcid.org/0009-0006-6802-5951
  • Nguyen Trong Hoanh Phong Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam https://orcid.org/0009-0005-7000-8408
  • Le Nghiem Anh Tuan Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B, TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-6913-5638
  • Tran Tho Phuoc Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B, TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Viet Nam https://orcid.org/0009-0003-7877-6896
  • Nguyen Quoc Hien Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B, TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0001-6265-7743

DOI:

https://doi.org/10.15625/2525-2518/18489

Keywords:

Pantoea stewartii, nano ZnO/COS, nano ZnO/COS-I2, jackfruit

Abstract

Nano ZnO/chitosan oligosaccharide (ZnO/COS) and nano ZnO/chitosan oligosaccharide-iodine complex (ZnO/COS-I2) prepared in this study are new materials consisting of ZnO nanoparticles (12.3 - 15.0 nm) dispersed in COS and COS-I2 solutions. Both ZnO/COS and ZnO/COS-I2 nanomaterials have the ability to resist Pantoea stewartii (P. stewartii) causes jackfruit bronzing bacterium. The COS with a low molecular weight (Mw) of 3,320 g/mol has the main advantage that is completely soluble in both acidic and alkaline mediums to pH 9. The characterizations of materials nanomaterials were determined by gel permeation chromatography (GPC), nuclear magnetic resonance (1H-NMR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results of the in vitro test against P. stewartii of ZnO/COS-I2 nanomaterial showed that the antibacterial efficacy is 100% at 500 ppm of active ingredient concentration. The studied results also confirmed that nano ZnO/COS-I2 nanomaterial has the ability to inhibit bacteria higher than that nano ZnO/COS nanomaterial. Therefore, the ZnO/COS-I2 nanomaterial has great potential to use as an effective agent to control the serious damage jackfruit bronzing bacterium and has no specific treatment.

Downloads

Download data is not yet available.

References

1. Beek W. J., Wienk M. M., and Janssen R. A. - Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer, Adv. Mater. 16 (12) (2004) 1009-1013. doi.org/10.1002/adma.200306659.

2. Baruwati B., Kumar D. K., and Manorama S. V. - Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH, Sens. Actuators B: Chem. 119 (2) (2006) 676-682. doi.org/10.1016/j.snb.2006.01.028.

3. Vaseem M., Umar A., and Hahn Y. B. - ZnO nanoparticles: Growth, properties, and applications. In: Umar A., and Hahn Y. B. - Metal oxide nanostructures and their applications, American Scientific Publishers, American, 2010, pp. 1-36.

4. Chang S. P., and Chen K. J. - Zinc oxide nanoparticle photodetector, J. Nanomater 2012 (2012) 602398. doi.org/10.1155/2012/602398.

5. Dadi R., Azouani R., Traore M., Mielcarek C., and Kanaev A. - Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains, Mater. Sci. Eng. C 104 (2019) 109968. doi.org/10.1016/j.msec.2019.109968.

6. Nagajyothi P. C., Cha S. J., Yang I. J., Sreekanth T. V. M., Kim K. J., and Shin H. M. - Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract, J. Photochem. Photobiol. B: Biol. 146 (2015) 10-17. doi.org/10.1016/j.jphotobiol.2015.02.008.

7. Agarwal H., and Shanmugam V. - A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach, Bioorg. Chem. 94 (2020) 103423 doi.org/10.1016/j.bioorg.2019.103423.

8. Mishra P. K., Mishra H., Ekielski A., Talegaonkar S., and Vaidya B. - Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications, Drug Discov. Today 22 (12) (2017) 1825-1834. doi.org/10.

9. Kalia A., Abd-Elsalam K. A., and Kuca K. - Zinc-based nanomaterials for diagnosis and management of plant diseases: Ecological safety and future prospects, J. Fungi 6 (4) (2020) 222. doi.org/10.3390/jof6040222.

10. Zhang W., Liu X., Bao S., Xiao B., and Fang T. - Evaluation of nano-specific toxicity of zinc oxide, copper oxide, and silver nanoparticles through toxic ratio, J. Nanopart. Res. 18 (2016) 1-13. doi.org/10.1007/s11051-016-3689-2.

11. Graham J. H., Johnson E. G., Myers M. E., Young M., Rajasekaran P., Das S., and Santra S. - Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees, Plant Dis. 100 (12) (2016) 2442-2447. doi.org/10.1094/pdis-05-16-0598-re.

12. Khan M., and Siddiqui Z. A. - Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant, Indian Phytopathol 71 (3) (2018) 355-364. doi.org/10.1007/s42360-018-0064-5.

13. Elsharkawy M., Derbalah A., Hamza A., and El-Shaer A. - Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ, Sci. Pollut. Res. 27 (16) (2020) 19049-19057. doi.org/10.1007/s11356-018-3806-0.

14. Sirelkhatim A., Mahmud S., Seeni A., Kaus N. H. M., Ann L. C., Bakhori S. K. M., Hasan H., and Mohamad D. - Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano Micro Lett. 7 (3) (2015) 219-242. doi.org/10.1007/s40820-015-0040-x.

15. Zhang J., Sun Yin Su H., and Liao Yan C. - Control of ZnO morphology via a simple solution route, Chem. Mater. 14 (10) (2002) 4172-4177. doi.org/10.1021/cm020077h.

16. Gold K., Slay B., Knackstedt M., and Gaharwar A. K. - Antimicrobial activity of metal and metal‐oxide based nanoparticles, Adv. Ther. 1 (3) (2018) 1700033. doi.org/10.1002/ adtp.201700033.

17. Xie Y., He Y., Irwin P. L., Jin T., and Shi X. - Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni, Appl. Environ. Microbiol. 77 (7) (2011) 2325-2331. doi.org/10.1128/AEM.02149-10.

18. Yusof N. A. A., Zain N. M., and Pauzi N. - Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against gram-positive and gram-negative bacteria, Int. J. Biol. Macromol. 124 (2019) 1132-1136. doi.org/10.1016/ j.ijbiomac.2018.11.228.

19. Azam A., Ahmed A. S., Oves M., Khan M. S., Habib S. S., and Memic A. - Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: A comparative study, Int. J. Nanomed. 7 (2012) 6003-6009. doi.org/10.2147/IJN.S35347.

20. Alias S. S., and Mohamad A. A. - ZnO Nanocrystalline Metal Oxide semiconductor via sol gel method, in: Alias S. S., and Mohamad A. A. (Eds.), Synthesis of zinc oxide by sol-gel method for photoelectrochemical cells, Springer, Singapore, 2014, pp.1-7. doi.org/10.1007/978-981-4560-77-1.

21. Souza R. C. D., Haberbeck L. U., Riella H. G., Ribeiro D. H., and Carciofi B. A. - Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process, Braz. J. Chem. Eng. 36 (2019) 885-893. doi.org/10.1590/0104-6632.20190362s20180027.

22. Tran N., Mir A., Mallik D., Sinha A., Nayar S., and Webster T. J. - Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus, Int. J. Nanomed. 5 (2010) 277-283. doi.org/10.2147/IJN.S9220.

23. Du D. X., and Vuong B. X. - Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity, Adv. Mater. Sci. Eng. 2019 (2019) 8781013. doi.org/10.1155/2019/8781013.

24. Dai T., Tanaka M., Huang Y. Y., and Hamblin M. R. - Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects, Expert Rev. Anti-Infect. Ther. 9 (7) (2011) 857-879. doi.org/10.1586/eri.11.59.

25. Li P., Cao Z., Wu Z., Wang X., and Li X. - The effect and action mechanisms of oligochitosan on control of stem dry rot of Zanthoxylum bungeanum, Int. J. Mol. Sci. 17 (7) (2016) 1044. doi.org/10.3390/ijms17071044.

26. Qian J., Wang Q., Chen Y., Mo C., Liang C., and Guo H. - The correlation of molecule weight of chitosan oligomers with the corresponding viscosity and antibacterial activity, Carbohydr. Res. 530 (2023) 108860. doi.org/10.1016/j.carres.2023.108860.

27. Wang Q. Z., Chen X. G., Liu N., Wang S. X., Liu C. S., Meng X. H., and Liu C. G. - Protonation constants of chitosan with different molecular weight and degree of deacetylation, Carbohydr. Polym. 65 (2) (2006) 194-201. doi.org/10.1016/j.carbpol. 2006.01.001.

28. Mohammed M. A., Syeda J. T. M., Wasan K. M., and Wasan E. K. - An overview of chitosan nanoparticles and its application in non-parenteral drug delivery, Pharm. 9 (4) (2017) 53-78. doi.org/10.3390/pharmaceutics9040053.

29. Mustika R., and Wardana A. - Nanocomposite coating based on chitosan and ZnO nanoparticles to maintain the storage quality of meatball, Food Res. 4 (2020) 1867-1870. doi.org/10.26656/fr.2017.4(6).169.

30. Zhang X., Zhang Z., Wu W., Yang J., and Yang Q. - Preparation and characterization of chitosan/nano-ZnO composite film with antimicrobial activity, Bioprocess Biosyst. Eng. 44 (6) (2021) 1193-1199. doi.org/10.1007/s00449-021-02521-x.

31. Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., and Kahru A. - Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review, Arch. Toxicol. 87 (7) (2013) 1181-1200. doi.org/10.1007/s00204-013-1079-4.

32. Mallick S., Sharma S., Banerjee M., Ghosh S. S., Chattopadhyay A., and Paul A. - Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl. Mater. Interfaces 4 (3) (2012) 1313-1323. doi.org/10.1021/am201586w.

33. Hassan E. M. - Ionic chitosan-iodine complexes: Antiseptic hydrogels and wound healing promoters. U.S. Patent No. US6521243B2, Washington, DC: U.S. Patent and Trademark Office, 2003.

34. Limchoowong N., Sricharoen P., Techawongstien S., Chanthai S. - An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan, Food Chem. 200 (2016) 223-229. doi.org/10.1016/j.foodchem.2016.01.042.

35. Tri M. V., Hoa N. V., Chau N. M., Pane A., Faedda R., De Patrizio A., Schena L., Olsson C. H. B., Wright S. A. I, Ramstedt M., et al. - Decline of jackfruit (Artocarpus heterophyllus) incited by Phytophthora palmivora in Viet Nam, Phytopathol. Mediterr. 54 (2) (2015) 275-280. doi.org/10.14601/Phytopathol_Mediterr-15008.

36. Chung M. D., Duc T. H., Kieu N. T., Phuong N. D., Ha N. T., Canh N. X., Giang N. V., Hien P. H., Yen N. H., and Duc N. T. - Pests and diseases survey on jackfruit trees in Hau Giang province, Mon. J. 6 (139) (2022) 79-86. doi.org/10.32945/atr3612.2014.

37. Gapasin R. M., Garcia R. P., Advincula C. T., De la Cruz C. S., and Borines L. M. - Fruit bronzing: a new disease affecting jackfruit caused by (smith) mergaert Pantoea stewartii et al, Ann. Trop. Res. 36 (1) (2014) 17-31.

38. Jeger M., Bragard C., Candresse T., and Chatzivassiliou E., Dehnen‐Schmutz K., Gilioli G., Caffier D. - Pest categorisation of Pantoea stewartii subsp. stewartii, EFSA J. 16 (7) (2018) e05356. doi.org/10.2903/j.efsa.2018.5356.

39. Ibrahim R., Ismail S. I., Ina-Salwany M. Y., and Zulperi D. - Biology, diagnostics, pathogenomics and mitigation strategies of jackfruit-bronzing bacterium Pantoea stewartii subspecies stewartii: What do we know so far about this culprit?, Hortic. 8 (8) (2022) 702. doi.org/10.3390/horticulturae8080702.

40. Duy N. N., Phu D. V., Anh N. T., and Hien N. Q. - Synergistic degradation to prepare oligochitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide, Radiat. Phys. Chem. 80 (7) (2011) 848-853. doi.org/10.1016/j.radphyschem.2011.03.012.

41. Lavertu M., Xia Z., Serreqi A. N., Berrada M., Rodrigues A., Wang D., Buschmann M. D., and Gupta A. - A validated 1H-NMR method for the determination of the degree of deacetylation of chitosan, J. Pharm. Biomed. Anal. 32 (6) (2003) 1149-1158. doi.org/10.1016/S0731-7085(03)00155-9.

42. Dey S. C., Al-Amin M., Rashid T. U., Sultan M. Z., Ashaduzzaman M., Sarker M., and Shamsuddin S. M. - Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red, Int. J. Latest Res. Eng. Technol. 2 (2) (2016) 52-62.

43. El-Masry R. M., Talat D., Hassoubah S. A., Zabermawi N. M., Eleiwa N. Z., Sherif R. M., Abourehab M. A. S., Abdel-Sattar R. M., Gamal M., Ibrahim M. S., et al. - Evaluation of the antimicrobial activity of ZnO nanoparticles against enterotoxigenic Staphylococcus aureus, Life 12 (10) (2022) 1662. doi.org/10.3390/life12101662.

44. Du B. D., Phu D. V., Quoc L. A., and Hien N. Q. - Synthesis and investigation of antimicrobial activity of Cu2O nanoparticles/zeolite, J. Nanopart. 2017 (2017) 7056864. doi.org/10.1155/2017/7056864.

45. Podgorbunskikh E., Kuskov T., Rychkov D., Lomovskii O., and Bychkov A. - Mechanical amorphization of chitosan with different molecular weights, Polym. 14 (20) (2022) 4438. doi.org/10.3390/polym14204438.

46. Shigeno Y., Kondo K., and Takemoto K. - Functional monomers and polymers, 74. Physico‐chemical study on the chitosan‐iodine complexes, Die Angew. Makromol. Chem. 91 (1) (1980) 55-67. doi.org/10.1002/apmc.1980.050910105.

47. Thanh N. N., Thinh N. N., anh Anh N. V. - In situ synthesis and characterization of ZnO/chitosan nanocomposite as an adsorbent for removal of congo red from aqueous solution, Adv. Polym. Technol. 2020 (2020) 3892694. doi.org/10.1155/2020/3892694.

48. Gudkov S. V., Burmistrov D. E., Serov D. A., Rebezov M. B., and Semenova A. A., Lisitsyn A. B. - A mini review of antibacterial properties of ZnO nanoparticles, Front. Phys., 9 (2021) 641481. doi.org/10.3389/fphy.2021.641481.

49. Nandhini M., Rajini S. B., Udayashankar A. C., Niranjana S. R., Lund O. S., Shetty H. S., and Prakash H. S. - Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet, Crop Prot. 121 (2019) 103-112. doi.org/10.1016/j.cropro.2019.03.015.

50. Vera‐Reyes I., Esparza‐Arredondo I. J. E., Lira‐Saldivar R. H., Granados‐Echegoyen C. A., Alvarez‐Roman R., Vásquez‐López A., Santos-Villarreal G., and Díaz‐Barriga Castro E. - In vitro antimicrobial effect of metallic nanoparticles on phytopathogenic strains of crop plants, J. Phytopathol. 167 (2019) 461-469. doi.org/10.1111/jph.12818.

Downloads

Published

03-11-2023

How to Cite

[1]
D. D. Bui, T. H. P. Nguyen, L. N. A. Tuan, P. T. Tran, and Q. H. Nguyen, “Preparation and in vitro antibacterial activity against Pantoea stewartii causing jacfruit bronzing disease of nano ZnO/oligochitosan-iodine complex”, Vietnam J. Sci. Technol., vol. 63, no. 2, pp. 273–284, Nov. 2023.

Issue

Section

Materials

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.