Application of data assimilation for parameter correction in super cavity modelling
Author affiliations
DOI:
https://doi.org/10.15625/0866-708X/54/3/6566Keywords:
data assimilation, optimal, Runge-Kutta methods.Abstract
On the imperfect water entry, a high speed slender body moving in the forward direction rotates inside the cavity. The super cavity model describes the very fast motion of body in water. In the super cavity model the drag coefficient plays important role in body's motion. In some references this drag coefficient is simply chosen by different values in the interval 0.8-1.0. In some other references this drag coefficient is written by the formula with is the cavity number, is the angle of body axis and flow direction, is a parameter chosen from the interval 0.6-0.85. In this paper the drag coefficient is written with fixed and the parameter is corrected so that the simulation body velocities are closer to observation data. To find the convenient drag coefficient the data assimilation method by differential variation is applied. In this method the observing data is used in the cost function. The data assimilation is one of the effected methods to solve the optimal problems by solving the adjoin problems and then finding the gradient of cost function.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.