Copper oxide/biopolymer nanocomposites: synthesis and applications, a comprehensive review
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/20843Keywords:
copper oxide nanocomposites, biopolymers, carboxymethyl tamarind kernel gum, green synthesis.Abstract
Copper oxide particles have a significant role in various fields due to their many properties like special shape, size, and high surface area. Due to their rarity and unique characteristics, such as their large surface area, paramagnetic nature, and ease of separation, Copper oxide nanoparticles have received the greatest attention. Chitosan, Guar Gum, Tamarind, Alginate, starch, cellulose, polysaccharide, etc. are examples of natural biopolymers that have proven to be excellent hosts for the creation of CuO nanoparticles. Long-established fabrication techniques for biopolymer-based CuO nanocomposites include co-precipitations, green synthesis, Solvent Casting Method, Alco thermal method, and Sol-Gel methods. Excellent biological characteristics of Copper oxide/biopolymer nanocomposites include their potent antibacterial activity against a variety of diseases as well as bacteria that are resistant to antibiotics. These characteristics have sparked the creation of numerous strategies with direct biological applications, including customized surfaces with antimicrobial effects, wound dressings, and modified textiles. This study aims to provide the very first biopolymer CuO nanoparticles to be reported in the previous ten years as well as its appealing methodology in diverse applications.
Downloads
References
1. Ahamed M., Alhadlaq H. A., Khan M. M., Karuppiah P., and Al-Dhabi N. A. - Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles, Journal of Nanomaterials. 1 (2014) 637858. https://doi.org/10.1155/ 2014/637858
2. Tran T. H. and Nguyen V. T. - Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: a brief review, International scholarly research notices 1 (2014) 856592.https://doi.org/10.1155/2014/856592
3. Das D., Nath B. C., Phukon P. and Dolui S. K. - Synthesis and evaluation of antioxidant and antibacterial behaviour of CuO nanoparticles, Colloids and Surfaces B: Biointerfaces 101 (2013) 430-433.https://doi.org/10.1016/j.colsurfb.2012.07.002
4. Badetti E., Calgaro L., Falchi L., Bonetto A., Bettiol C., Leonetti B., Ambrosi E., Zendri E. and Marcomini A. - Interaction between copper oxide nanoparticles and amino acids: influence on the antibacterial activity, Nanomaterials 9 (5) (2019) 792. https://doi.org/ 10.3390/nano9050792
5. Ren G., Hu D., Cheng E.W., Vargas-Reus M. A., Reip P., and Allaker R. P. - Characterisation of copper oxide nanoparticles for antimicrobial applications, International journal of antimicrobial agents 33 (6) (2009) 587-590. https://doi.org/10.1016/j.ijantimicag.2008.12.004
6. Rehana D., Mahendiran D., Kumar R. S., and Rahiman A. K. - Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts, Biomedicine & Pharmacotherapy 89 ((2017) 1067-1077. https://doi.org/10.1016/j.biopha.2017.02.101
7. Jawad M., Khan A., and Shah S. A. A. - Examination of couple stress hybrid nanoparticles (CuO-Cu/blood) as a targeted drug carrier with magnetic effects through porous sheet, Brazilian Journal of Physics 51 (4) (2021) 1096-1107. https://doi.org/ 10.1007/s13538-021-00930-7
8. Chen S., Wang H., Jian Z., Fei G., Qian W., Luo G., Wang Z., and Xia H. - Novel poly (vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application, Macromolecular Bioscience 20 (3) (2020) 1900385. https://doi.org/ 10.1002/mabi.201900385
9. Ren G., Hu D., Cheng E. W., Vargas-Reus M. A., Reip P., and Allaker R. P. - Characterisation of copper oxide nanoparticles for antimicrobial applications, International journal of antimicrobial agents 33 (6) (2009) 587-590. https://doi.org/ 10.1016/j.ijantimicag.2008.12.004
10. Verma D. K., Malik R., Meena J., and Rameshwari R. - Synthesis, characterization and applications of chitosan based metallic nanoparticles: A review, Journal of Applied and Natural Science 13 (2) (2021) 544-551. https://doi.org/10.31018/jans.v13i2.2635
11. Saya L., Malik V., Singh A., Singh S., Gambhir G., Singh W. R., Chandra R., and Hooda S. - Guar gum based nanocomposites: Role in water purification through efficient removal of dyes and metal ions, Carbohydrate polymers 261 (2021) 117851. https://doi.org/10.1016/j.carbpol.2021.117851
12. Ebnalwaled A. A. and Ismaiel A. M. - Developing novel UV shielding films based on PVA/Gelatin/0.01 CuO nanocomposite: On the properties optimization using γ-irradiation, Measurement 134 (2019) 89-100. https://doi.org/10.1016/j.measurement. 2018.10.062
13. Meena J., Verma S. K., Rameshwari R., and Verma D. K. - polyaniline/carboxymethyl guar gum nanocomposites: as biodegradable, conductive film, Rasayan Journal of Chemistry 15 (2) (2022). http://doi.org/10.31788/RJC.2022.1526820
14. Abdollahi Z., Zare E.N., Salimi F., Goudarzi I., Tay F. R., and Makvandi P. - Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: antioxidant and antimicrobial properties and accelerated wound healing in vivo, International Journal of Molecular Sciences 22 (5) (2021) 2531. https://doi.org/10.3390/ijms22052531
15. Sharma N. and Rana V. S. - A review on polysaccharide based nanocomposite hydrogel systems fabrication using diverse reinforcing materials, J. Polym. Compos 8 (1) (2020) 6-17.
16. Mesgari M., Aalami A. H., Sathyapalan T., and Sahebkar A. - A comprehensive review of the development of carbohydrate macromolecules and copper oxide nanocomposite films in food nanopackaging, Bioinorganic Chemistry and Applications 1 (2022) 7557825.
17. Buk V., Emregul E. and Emregul K. C. - Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing, Materials Science and Engineering: C. 74 (2017) 307-314.https://doi.org/10.1016/j.msec.2016.12.003
18. Shabahang Z., Nouri L., and Nafchi A. M. - Composite film based on whey protein isolate/pectin/CuO nanoparticles/betanin pigments; investigation of physicochemical properties, Journal of Polymers and the Environment 30 (9) (2022) 3985-3998. https://doi.org/10.1007/s10924-022-02481-7
19. Quignard F., Cot D., Di Renzo F., and Gérardin C. - Core-shell copper hydroxide-polysaccharide composites with hierarchical macroporosity, Progress in solid state chemistry 34 (2-4) (2006) 161-169. https://doi.org/10.1016/j.progsolidstchem. 2005.11.016
20. Gouda M. and Hebeish A. - Preparation and evaluation of CuO/chitosan nanocomposite for antibacterial finishing cotton fabric, Journal of Industrial Textiles 39 (3) (2010) 203-214. https://doi.org/10.1177/1528083709103142
21. Balasubramanian S. and Kamaraj P. K. - Fabrication of natural polymer assisted mesoporous Co3O4/carbon composites for supercapacitors, Electrochimica Acta 168 (2015) 50-58.https://doi.org/10.1016/j.electacta.2015.04.019
22. Hashim A., Habeeb, M.A. and Hadi A. - Synthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperatures. Sensor Letters. 15 (9) (2017) 758-761. https://doi.org/10.1166/ sl.2017.3876
23. El-Trass A., ElShamy H., El-Mehasseb I., and El-Kemary M. - CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids, Applied Surface Science 258 (7) (2012) 2997-3001. https://doi.org/10.1016/j.apsusc.2011.11.025
24. Javed R., Rais F., Kaleem M., Jamil B., Ahmad M. A., Yu T., Qureshi S. W., and Ao Q., - Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry, International Journal of Biological Macromolecules 167 (2021) 1452-1467. https://doi.org/10.1016/j.ijbiomac.2020.11.099
25. Sharma G., Katwal R., and Sharma G. - Fabrication, characterization and cytotoxicity of guar gum/copper oxide nanocomposite: efficient removal of organic pollutant, In Materials Science Forum 842 (2016) 88-102. https://doi.org/10.4028/ www.scientific.net/MSF.842.88
26. Ma M. G., Qing S. J., Li S. M., Zhu J. F., Fu L. H., and Sun R. C. - Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO, Carbohydrate polymers 91 (1) (2013) 162-168. https://doi.org/10.1016/ j.carbpol.2012.08.025
27. Syame S. M., Mohamed W. S., Mahmoud R. K., and Omara S. T. - Synthesis of copper-chitosan nanocomposites and their applications in treatment of local pathogenic isolates bacteria, Orient J. Chem. 33 (6) (2017) 2959-2969. http://dx.doi.org/10.13005/ ojc/330632
28. Yadollahi M., Gholamali I., Namazi H., and Aghazadeh M. - Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels, International journal of biological macromolecules 73 (2015) 109-114. https://doi.org/10.1016/j.ijbiomac.2014.10.063
29. Naeini A. H., Kalaee M., Moradi O., Khajavi R., and Abdouss M. - Eco-friendly inorganic-organic bionanocomposite (Copper oxide-Carboxyl methyl cellulose-Guar gum): Preparation and effective removal of dye from aqueous solution, Korean Journal of Chemical Engineering 39 (8) (2022) 2138-2147. https://doi.org/10.1007/s11814-022-1074-7
30. Roopan S. M., Priya D. D., Shanavas S., Acevedo R., Al-Dhabi N. A., and Arasu M. V. - CuO/C nanocomposite: Synthesis and optimization using sucrose as carbon source and its antifungal activity, Materials Science and Engineering C. 101 (2019) 404-414. https://doi.org/10.1016/j.msec.2019.03.105
31. Biswas K., Mohanta Y. K., Mishra A. K., Al-Sehemi A. G., Pannipara M., Sett A., Bratovcic A., De D., Prasad Panda B., Kumar Avula S., and Mohanta T. K. - Wet chemical development of CuO/GO nanocomposites: its augmented antimicrobial, antioxidant, and anticancerous activity, Journal of Materials Science: Materials in Medicine 32 (2021) 1-11.https://doi.org/10.1007/s10856-021-06612-9
32. Abdollahi Z., Zare E. N., Salimi F., Goudarzi I., Tay F. R., and Makvandi P. - Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: antioxidant and antimicrobial properties and accelerated wound healing in vivo, International journal of molecular sciences 22 (5) (2021) 2531. https://doi.org/10.3390/ijms22052531
33. Gholamali I., Hosseini S. N., Alipour E., and Yadollahi M. - Preparation and characterization of oxidized starch/CuO nanocomposite hydrogels applicable in a drug delivery system, Starch‐Stärke 71 (3-4) (2019) 1800118. https://doi.org/10.1002/ star.201800118
34. Revathi T. and Thambidurai S. - Cytotoxic, antioxidant and antibacterial activities of copper oxide incorporated chitosan-neem seed biocomposites, International journal of biological macromolecules 139 (2019) 867-878. https://doi.org/10.1016/j.ijbiomac. 2019.07.214
35. Siriphannon P. and Iamphaojeen Y. - Facile synthesis of chitosan/CuO nanocomposites for potential use as biocontrol agents, Bulletin of the Polish Academy of Sciences. Technical Sciences 66 (3) (2018) 311-316.
36. Safaei M. and Taran M. - Optimized synthesis, characterization, and antibacterial activity of an alginate–cupric oxide bionanocomposite, Journal of Applied Polymer Science 135 (2) (2018) 45682. https://doi.org/10.1002/app.45682
37. Zhang X., Guo H., Xiao N., Ma X., Liu C., Zhong L., and Xiao G. - Preparation and properties of epichlorohydrin-cross-linked chitosan/hydroxyethyl cellulose based CuO nanocomposite films, Cellulose. 29 (8) (2022) 4413-4426. https://doi.org/10.1007/ s10570-022-04511-y
38. Xie Y. Y., Hu X. H., Zhang Y. W., Wahid F., Chu L. Q., Jia S. R., and Zhong C. - Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films, Carbohydrate Polymers 229 (2020) 115456. https://doi.org/ 10.1016/j.carbpol.2019.115456
39. Namazi H., Pooresmaeil M., and Hasani M. - Oxidized starch/CuO bio-nanocomposite hydrogels as an antibacterial and stimuli-responsive agent with potential colon-specific naproxen delivery, International Journal of Polymeric Materials and Polymeric Biomaterials 70 (18) (2021) 1296-1305. https://doi.org/10.1080/00914037.2020. 1798431
40. Ashjari H. R., Dorraji M. S. S., Fakhrzadeh V., Eslami H., Rasoulifard M. H., Rastgouy-Houjaghan M., Gholizadeh P., and Kafil H. S. - Starch-based polyurethane/CuO nanocomposite foam: Antibacterial effects for infection control, International journal of biological macromolecules 111 (2018) 1076-1082. https://doi.org/10.1016/j.ijbiomac. 2018.01.137
41. Peighambardoust S. J., Peighambardoust S. H., Pournasir N., and Pakdel P. M. - Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications, Food Packaging and Shelf Life 22 (2019) 100420. https://doi.org/10.1016/j.fpsl.2019.100420
42. Song J., Xu L., Zhou C., Xing R., Dai Q., Liu D., and Song H. - Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection, ACS applied materials & interfaces 5 (24) (2013) 12928-12934. https://doi.org/10.1021/am403508f
43. Rao J. K., Raizada A., Ganguly D., Mankad M. M., Satayanarayana S. V., and Madhu G. M. - Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films, Journal of materials science 50 (2015) 7064-7074. https://doi.org/ 10.1007/s10853-015-9261-0
44. Kim Y. Y., Neudeck C., and Walsh D. - Biopolymer templating as synthetic route to functional metal oxide nanoparticles and porous sponges, Polymer Chemistry 1 (3) (2010) 272-275.DOI: 10.1039/B9PY00366E
45. Guesmi Y., Agougui H., Lafi R., Jabli M., and Hafiane A. - Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of Methylene Blue dye, Journal of Molecular Liquids 249 (2018) 912-920. https://doi.org/ 10.1016/j.molliq.2017.11.113
46. Kumari S. C., Dhand V., and Padma P. N. - Green synthesis of metallic nanoparticles: A review, Nanomaterials (2021) 259-281. https://doi.org/10.1016/B978-0-12-822401-4.00022-2
47. Padil V. V. T. and Černík M. - Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application, International journal of nanomedicine (2013) 889-898.
48. Verma D. K., Malik R., Meena J., and Rameshwari R. - Synthesis, characterization and applications of chitosan based metallic nanoparticles: A review, Journal of Applied and Natural Science 13 (2) (2021) 544-551.https://doi.org/10.31018/jans.v13i2.2635
49. Meena J., Chandra H., and Warkar S. G. - Carboxymethyl Tamarind Kernel Gum/ZnO-Biocomposite: As an Antifungal and Hazardous Metal Removal Agent, Journal of New Materials for Electrochemical Systems 25 (3) (2022). doi 10.14447/jnmes.v25i3.a08
50. Kumar V. D., Jagram M., and Kumar V. S. - Synthesis of nickel nanorods and their conversion into nanoparticles, Research Journal of Chemistry and Environment 26 (2022) 12.
51. Shukla S. K., Pandey S., Saha S., Singh H. R., Mishra P. K., Kumar S., and Jha S. K. - Removal of crystal violet by Cu-chitosan nano-biocomposite particles using Box–Behnken design, Journal of Environmental Chemical Engineering 9 (5) (2021) 105847. https://doi.org/10.1016/j.jece.2021.105847
52. Sahithya K., Das D., and Das N. - Adsorptive removal of monocrotophos from aqueous solution using biopolymer modified montmorillonite–CuO composites: equilibrium, kinetic and thermodynamic studies, Process Safety and Environmental Protection 99 (2016) 43-54.https://doi.org/10.1016/j.psep.2015.10.009
53. Jiao X., Gutha Y., and Zhang W. - Application of chitosan/poly (vinyl alcohol)/CuO (CS/PVA/CuO) beads as an adsorbent material for the removal of Pb (II) from aqueous environment, Colloids and Surfaces B: Biointerfaces 149 (2017) 184-195. https://doi.org/10.1016/j.colsurfb.2016.10.024
54. Choudhury P. R., Majumdar S., Sahoo G. C., Saha S., and Mondal P. - High-pressure ultrafiltration CuO/hydroxyethyl cellulose composite ceramic membrane for separation of Cr (VI) and Pb (II) from contaminated water, Chemical Engineering Journal 336 (2018) 570-578. https://doi.org/10.1016/j.cej.2017.12.062
55. Elwakeel K. Z. and Guibal E. - Arsenic (V) sorption using chitosan/Cu (OH) 2 and chitosan/CuO composite sorbents, Carbohydrate polymers 134 (2015) 190-204. https://doi.org/10.1016/j.carbpol.2015.07.012
56. Almughamisi M. S., Khan Z. A., Alshitari W., and Elwakeel K. Z. - Recovery of chromium (VI) oxyanions from aqueous solution using Cu (OH) 2 and CuO embedded chitosan adsorbents, Journal of Polymers and the Environment 28 (1) (2020) 47-60. https://doi.org/10.1007/s10924-019-01575-z
57. Ansari A., Siddiqui V. U., Akram M. K., Siddiqi W. A., and Sajid S. - Removal of Pb (II) from industrial wastewater using of CuO/Alg nanocomposite, In Smart Cities—Opportunities and Challenges: Select Proceedings of ICSC 2019 (2020) 167-175). https://doi.org/10.1007/978-981-15-2545-2_16
58. Mallakpour S., Azadi E., and Dinari M. - Mesoporous Ca-alginate/melamine-rich covalent organic polymer/cupric oxide-based microgel beads as heterogeneous catalyst for efficient catalytic reduction of hazardous water pollutants, Journal of Environmental Chemical Engineering 11 (2) (2023) 109294.https://doi.org/10.1016/j.jece.2023.109294
59. Ahmadi S. J., Sadjadi S., and Hosseinpour M. - Adsorption behavior of toxic metal ions on nano-structured CuO granules, Separation Science and Technology 47 (7) (2012) 1063-1069. https://doi.org/10.1080/01496395.2011.631675
60. Liu H., Li P., Qiu F., Zhang T., and Xu J. - Controllable preparation of FeOOH/CuO@ WBC composite based on water bamboo cellulose applied for enhanced arsenic removal, Food and Bioproducts Processing 123 (2020) 177-187. https://doi.org/ 10.1016/j.fbp.2020.06.018
61. Almasi H., Mehryar L., and Ghadertaj A. - Photocatalytic activity and water purification performance of in situ and ex situ synthesized bacterial cellulose‐CuO nanohybrids, Water Environment Research 92 (9) (2020) 1334-1349. https://doi.org/ 10.1002/wer.1331
62. Naeini A. H., Moradi O., Khajavi R., and Abdouss M. - Carboxyl methyl cellulose@ guar gum@ cuo nanoparticle as effective adsorbent for the removal of dye from aqueous solution (2021). https://doi.org/10.21203/rs.3.rs-862550/v1
63. Meena J. and Jassal P. S. - Cresol and it derivative Organic pollutant removal from waste water by adsorption the magneto chitosan nanoparticle, International Journal of Chemical Studies 5 (2017) 850-854.
64. Maslamani N., Bakhsh E. M., Khan S. B., Danish E. Y., Akhtar K., Fagieh T. M., Su X., and Asiri A. M. - Chitosan@ carboxymethylcellulose/CuO-Co2O3 nanoadsorbent as a super catalyst for the removal of water pollutants, Gels 8 (2) (2022) 91. https://doi.org/ 10.3390/gels8020091
65. Meena J. and Jassal P. S. - Phenol Organic Impurity Remove from pollutants Water By Batch Adsorption Studies with using Magneto Chitosan Nanoparticle. Aijreas. 2 (2017) 2455-6300.
66. Srivastava V. and Choubey A. K. - Investigation of adsorption of organic dyes present in wastewater using chitosan beads immobilized with biofabricated CuO nanoparticles, Journal of Molecular Structure 1242 (2021) 130749. https://doi.org/10.1016/ j.molstruc.2021.130749
67. Lakkaboyana S. K., Soontarapa K., Marella R. K. and Kannan K. - Preparation of novel chitosan polymeric nanocomposite as an efficient material for the removal of Acid Blue 25 from aqueous environment, International Journal of Biological Macromolecules 168 (2021) 760-768. https://doi.org/10.1016/j.ijbiomac.2020.11.133
68. Khan S. B., Ali F., Kamal T., Anwar Y., Asiri A. M., and Seo J. - CuO embedded chitosan spheres as antibacterial adsorbent for dyes, International journal of biological macromolecules 88 (2016) 113-119.https://doi.org/10.1016/j.ijbiomac.2016.03.026
69. Rahman N. and Varshney P. - Effective removal of doxycycline from aqueous solution using CuO nanoparticles decorated poly (2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan, Environmental Science and Pollution Research 28 (32) (2021) 43599-43617. https://doi.org/10.1007/s11356-021-13584-4
70. Alrebaki M. A., Ba-Abbad M. M., and Abdullah A. Z. - Novel Fe0 Embedded Alginate Beads and Coated with CuO-Fe3O4 as a Sustainable Catalyst for Photo-Fenton Degradation of Oxytetracycline in Wastewater, Arabian Journal for Science and Engineering 48 (7) (2023) 8957-8969. https://doi.org/10.1007/s13369-022-07577-9
71. Maslamani N., Khan S. B., Danish E. Y., Bakhsh E. M., Zakeeruddin S. M., and Asiri A. M. - Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants, Environmental Science and Pollution Research 28 (2021) 38476-38496. https://doi.org/10.1007/s11356-021-13304-y
72. Zhou Z., Lu C., Wu X., and Zhang X. - Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction, RSC advances 3 (48) (2013) 26066-26073. https://doi.org/ 10.1039/C3RA43006E
73. Azam A., Ahmed A. S., Oves M., Khan M. S., Habib S. S., and Memic A. - Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, International journal of nanomedicine (2012) 6003-6009.
74. Wahid F., Wang H. S., Lu Y. S., Zhong C., and Chu L. Q. - Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels, International journal of biological macromolecules 101 (2017) 690-695. https://doi.org/ 10.1016/j.ijbiomac.2017.03.132
75. Sathiyavimal S., Vasantharaj S., Kaliannan T., and Pugazhendhi A. - Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties, Carbohydrate polymers 241 (2020) 116243. https://doi.org/10.1016/ j.carbpol.2020.116243
76. Saberi D., Mansourinejhad S., Shadi A., and Habibi H. - One-pot synthesis of a highly disperse core–shell CuO–alginate nanocomposite and the investigation of its antibacterial and catalytic properties, New Journal of Chemistry 46 (1) (2022) 199-211. 10.1039/D1NJ02770K
77. Marković D., Radoičić M., Barudžija T., and Radetić M. - Modification of PET and PA fabrics with alginate and copper oxides nanoparticles, Composite Interfaces 28 (12) (2021) 1171-1187. https://doi.org/10.1080/09276440.2020.1868267
78. Alishah H., Pourseyedi S., Ebrahimipour S. Y., Mahani S. E., and Rafiei N. - Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line, Rendiconti Lincei 28 (2017) 65-71. https://doi.org/10.1007/s12210-016-0574-y
79. Ashjari H. R., Dorraji M. S. S., Fakhrzadeh V., Eslami H., Rasoulifard M. H., Rastgouy-Houjaghan M., Gholizadeh P., and Kafil H. S. - Starch-based polyurethane/CuO nanocomposite foam: Antibacterial effects for infection control, International journal of biological macromolecules 111 (2018) 1076-1082. https://doi.org/10.1016/ j.ijbiomac.2018.01.137
80. Hussain R., Aziz W. and Abbas Ibrahim I. - Antibacterial activity of CuO-cellulose nano rods depends on a new green synthesis (cotton), Journal of Nanostructures 9 (4) (2019) 761-767. 10.22052/JNS.2019.04.017
81. Xie Y. Y., Hu X. H., Zhang Y. W., Wahid F., Chu L.Q., Jia S.R., and Zhong C. - Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films, Carbohydrate Polymers 229 (2020) 115456. https://doi.org/ 10.1016/j.carbpol.2019.115456
82. Karim M. N., Singh M., Weerathunge P., Bian P., Zheng R., Dekiwadia C., Ahmed T., Walia S., Della Gaspera E., Singh S., and Ramanathan R. - Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods, ACS Applied Nano Materials 1 (4) (2018) 1694-1704. https://doi.org/ 10.1021/acsanm.8b00153
83. Dwivedi L. M., Shukla N., Baranwal K., Gupta S., Siddique S., and Singh V. - Gum Acacia modified Ni doped CuO nanoparticles: an excellent antibacterial material, Journal of Cluster Science 32 (2021) 209-219. https://doi.org/10.1007/s10876-020-01779-7
84. Ismaiel M., Salem W., Sayed Abd El-sadek M., Mohamed Salman H., and Mohamed Said H. - Synthesis and Characterization of Polyvinyl Alcohol/Gelatin/CuO Nanocomposite Film Via γ-Irradiation for Antimicrobial Application, International Journal of Artificial Intelligence and Emerging Technology 1 (2) (2018) 49-62. 10.21608/ijaiet.2018.181644
85. Patel P. K., Prajapati N. K., and Dubey B. K. - Madhuca indica: a review of its medicinal property, International Journal of Pharmaceutical Sciences and Research 3 (5) (2018) 1285.
86. Wilczewska A. Z., Niemirowicz K., Markiewicz K. H., and Car H. - Nanoparticles as drug delivery systems, Pharmacological reports 64 (5) (2012) 1020-1037. https://doi.org/ 10.1016/S1734-1140(12)70901-5
87. Venkataprasanna K.S., Prakash J., Vignesh S., Bharath G., Venkatesan M., Banat F., Sahabudeen S., Ramachandran S., and Venkatasubbu G. D. - Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application, International journal of biological macromolecules 143 (2020) 744-762. https://doi.org/ 10.1016/j.ijbiomac.2019.10.029
88. Sriram K., Maheswari P. U., Ezhilarasu A., Begum K. M. M. S., and Arthanareeswaran G.- CuO‐loaded hydrophobically modified chitosan as hybrid carrier for curcumin delivery and anticancer activity, Asia‐Pacific Journal of Chemical Engineering 12 (6) (2017) 858-871. https://doi.org/10.1002/apj.2124
89. Gholamali I. and Alipour E. - Carboxymethyl chitosan/starch/CuO nanocomposite hydrogels for controlled release of amoxicillin, Regenerative Engineering and Translational Medicine 6 (4) (2020) 398-406.https://doi.org/10.1007/s40883-020-00173-z
90. Ahmadian Y., Bakravi A., Hashemi H., and Namazi H. - Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent, Polymer Bulletin 76 (2019) 1967-1983. https://doi.org/10.1007/s00289-018-2477-9
91. Dharmalingam K., Bordoloi D., Kunnumakkara A.B. and Anandalakshmi R. - Preparation and characterization of cellulose‐based nanocomposite hydrogel films containing CuO/Cu2O/Cu with antibacterial activity, Journal of Applied Polymer Science 137 (40) (2020) 49216. https://doi.org/10.1002/app.49216
92. Chen J., Karmakar B., Salem M.A., Alzahrani A.Y., Bani-Fwaz M.Z., Abdel-Daim M.M. and El-kott A.F. - CuO NPs@ Starch as a novel chemotherapeutic drug for the treatment of several types of gastrointestinal system cancers including gastric, pancreatic, and colon cancers, Arabian Journal of Chemistry 15 (4) (2022) 103681. https://doi.org/10.1016/j.arabjc.2021.103681
93. Bharathi D., Ranjithkumar R., Chandarshekar B., and Bhuvaneshwari V. - Bio-inspired synthesis of chitosan/copper oxide nanocomposite using rutin and their anti-proliferative activity in human lung cancer cells, International Journal of Biological Macromolecules 141 (2019) 476-483. https://doi.org/10.1016/j.ijbiomac.2019.08.235
94. Konar S., Kalita H., Puvvada N., Tantubay S., Mahto M. K., Biswas S., and Pathak A. - Shape-dependent catalytic activity of CuO nanostructures, Journal of catalysis 336 (2016) 11-22. https://doi.org/10.1016/j.jcat.2015.12.017
95. Nasrollahzadeh M., Bidgoli N. S. S., Nezafat Z., and Shafiei N. - Catalytic applications of biopolymer-based metal nanoparticles, Biopolymer-based metal nanoparticle chemistry for sustainable applications, Elsevier, 2021, pp. 423-516.
96. Raghavendra G. M., Jung J., Kim D., and Seo J. - Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties, Carbohydrate polymers 172 (2017) 78-84. https://doi.org/10.1016/j.carbpol.2017.04.070
97. Ikram M., Shahzadi A., Hayat S., Nabgan W., Ul-Hamid A., Haider A., Noor M., Goumri-Said S., Kanoun M. B., and Ali S. - Novel Ta/chitosan-doped CuO nanorods for catalytic purification of industrial wastewater and antimicrobial applications, RSC advances 12 (27) (2022) 16991-17004.DOI: 10.1039/D2RA03006C
98. Aljuhani A., Riyadh S. M., and Khalil K. D. - Chitosan/CuO nanocomposite films mediated regioselective synthesis of 1, 3, 4-trisubstituted pyrazoles under microwave irradiation, Journal of Saudi Chemical Society 25 (8) (2021) 101276. https://doi.org/10.1016/j.jscs.2021.101276
99. Kamal T. - Aminophenols formation from nitrophenols using agar biopolymer hydrogel supported CuO nanoparticles catalyst, Polymer Testing 77 (2019) 105896. https://doi.org/10.1016/j.polymertesting.2019.105896
100. Khan F. U., Khan S. B., Kamal T., Asiri A. M., Khan I. U., and Akhtar K. - Novel combination of zero-valent Cu and Ag nanoparticles@ cellulose acetate nanocomposite for the reduction of 4-nitro phenol, International journal of biological macromolecules 102 (2017) 868-877.https://doi.org/10.1016/j.ijbiomac.2017.04.062
101. Souza J. F., Costa G. P., Luque R., Alves D., and Fajardo A. R. - Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: a green and versatile catalyst for the synthesis of 1, 2, 3-triazoles, Catalysis Science & Technology 9 (1) (2019) 136-145. DOI:10.1039/C8CY01796D
102. Warkara S. G. and Meena J. - Synthesis and applications of biopolymer/FeO nanocomposites: A review, Journal of New Materials for Electrochemical Systems 25 (1) (2022). https://doi.org/10.14447/jnmes.v25i1.a02
103. Bilal M., Ikram M., Shujah T., Haider A., Naz S., Ul-Hamid A., Naz M., Haider J., Shahzadi I., and Nabgan W. - Chitosan-grafted polyacrylic acid-doped copper oxide nanoflakes used as a potential dye degrader and antibacterial agent: in silico molecular docking analysis. ACS omega 7 (45) (2022) 41614-41626. https://doi.org/ 10.1021/acsomega.2c05625
104. Logpriya S., Bhuvaneshwari V., Vaidehi D., SenthilKumar R. P., Nithya Malar R.S., Pavithra Sheetal B., Amsaveni R., and Kalaiselvi M. - Preparation and characterization of ascorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity,Journal of Nanostructure in Chemistry 8 (2018) 301-309.https://doi.org/10.1007/s40097-018-0273-6
105. Ginjupalli K., Alla R., Shaw T., Tellapragada C., Gupta L. K., and Upadhya P. N. - Comparative evaluation of efficacy of Zinc oxide and Copper oxide nanoparticles as antimicrobial additives in alginate impression materials, Materials Today: Proceedings 5 (8) (2018) 16258-16266. https://doi.org/10.1016/j.matpr.2018.05.117
106. López O. V., Villanueva M. E., Copello G. J., and Villar M. A. - Flexible thermoplastic starch films functionalized with copper particles for packaging of food products, Functional Composite Materials 1 (2020) 1-10. https://doi.org/10.1186/s42252-020-00009-7
107. Chadijah S. and Nurhuda S. - Synthesis of chitosan-CuO composite and it’s application as heavy metal adsorbent, Journal of Physics: Conference Series 1 (1899) (2021) 012029. DOI 10.1088/1742-6596/1899/1/012029
108. Sharma J. K., Akhtar M. S., Ameen S., Srivastava P., and Sing G. - Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications, Journal of Alloys and Compounds 632 (2015) 321-325. https://doi.org/10.1016/j.jallcom.2015.01.172
109. Kaur P., Thakur R., Barnela M., Chopra M., Manuja A. and Chaudhury A. - Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan–metal nanocomposites, Journal of Chemical Technology & Biotechnology 90 (5) (2015) 867-873. https://doi.org/10.1002/jctb.4383
110. Meena J., Kumar M., Rasool A., and Krismastuti F. S. H. - Optimizing Antimicrobial Efficacy and Ammonia Sensing in a Novel Carboxymethyl Tamarind Kernel Gum/Fe Nanocomposite, Sustainable Chemistry One World, 2024, pp. 100010. https://doi.org/10.1016/j.scowo.2024.100010
111. Meena J., Warkar S. G., and Verma D. K. - Carboxymethyl Tamarind Kernel Gum Nanoparticles; As an Antioxidant Activity, Journal of New Materials for Electrochemical Systems 26 (3) (2023).10.14447/jnmes.v26i3.a01
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.