A Review of Perovskite-based Lithium-Ion Battery Materials
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/20600Keywords:
Perovskite, lithium-ion battery, energy, electrode, electrolyteAbstract
Lithium-ion batteries (Li-ion batteries or LIBs) have garnered significant interest as a promising technology in the energy industry and electronic devices for the past few decades owing to their superior energy and power density profiles, small size, long cycle life, low self-discharge rate, no memory effect, long-lasting power properties, and environmental friendly. The ongoing advancement of electrode and electrolyte materials has contributed significantly to enhancing and spreading the application of lithium-ion battery technology. Among the non-precious metal-based materials, perovskites have emerged as attention over the last decade, holding a prominent position in materials and energy. Due to their unique physical and chemical properties, these materials have garnered particular interest for their potential application in electrochemical energy devices. Perovskite oxides have piqued the interest of researchers as potential catalysts in Li-O₂ batteries due to their remarkable electrochemical stability, high electronic and ionic conductivity, and the ability to modify their properties through doping and element substitution. The purpose of this article is to provide an overview of recent developments in the application of perovskites as lithium-ion battery materials, including the exploration of novel compositions and structures, optimization of fabrication methods, and a deeper understanding of the fundamental mechanisms that can unveil the potential of perovskite materials.Downloads
References
Yu K., Li J., Qi H., Liang C. - High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method, Diam Relat Mater [Internet] 86 (April) (2018) 139-45. doi.org/10.1016/j.diamond.2018.04.019
2. Monama G. R., Ramohlola K. E., Iwuoha E. I., Modibane K. D. - Progress on perovskite materials for energy application, Results Chem [Internet] 4 (2021) 100321. doi.org/10.1016/j.rechem.2022.100321
3. Wang J., Yang Z., Pan F., Zhong X., Liu X., Gu L., et al. - Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries, RSC Adv. 5 (68) (2015) 55136-42.
4. Chang L., Li J., Le Z., Nie P., Guo Y., Wang H., et al. - Perovskite-type CaMnO3 anode material for highly efficient and stable lithium ion storage, J. Colloid Interface Sci. [Internet] 584 (2021) 698-705. doi.org/10.1016/j.jcis.2020.04.014
5. Yu X., Zhang K., Tian N., Qin A., Liao L., Du R., et al. - Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries, Mater Lett [Internet] 142 (12) (2015) 193-6. doi.org/10.1016/j.matlet.2014.11.160
6. Xie W., Dang Y., Wu L., Liu W., Tang A., Luo Y. - Experimental and molecular simulating study on promoting electrolyte-immersed mechanical properties of cellulose/lignin separator for lithium-ion battery, Polym Test (2020) 90.
7. Ramirez D., Suto Y., Rosero-Navarro N. C., Miura A., Tadanaga K., Jaramillo F. - Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation, Inorg Chem. 57 (7) (2018) 4181-8.
8. Brinkert K., Mandin P. - Fundamentals and future applications of electrochemical energy conversion in space, npj Microgravity 8 (1) (2022).
9. Trahey L., Brushett F. R., Balsara N. P., Ceder G., Cheng L., Chiang Y. M., et al. - Energy storage emerging: A perspective from the Joint Center for Energy Storage Research, Proc. Natl. Acad. Sci. USA 117 (23) (2020) 12550-7.
10. Yabuzaki T., Sato M., Kim H., Watanabe K., Matsui N., Suzuki K., et al. - Electrochemical and mechanical properties and chemical stability of Li10GeP2S12/Al2O3 composite electrolytes, J. Ceram Soc. Japan 131 (10) (2023) 675-84.
11. Zhu Y., He X., Mo Y. - First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries, J. Mater. Chem. A [Internet] 4 (9) (2016) 3253-66. doi.org/10.1039/C5TA08574H
12. Sharma S. K., Sharma G., Gaur A., Arya A., Mirsafi F. S., Abolhassani R., et al. - Progress in electrode and electrolyte materials: path to all-solid-state Li-ion batteries, Energy Adv. (8) (2022) 457-510.
13. Kim T., Song W., Son D. Y., Ono L. K., Qi Y. - Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Mater. Chem. A. 7 (7) (2019) 2942-64.
14. Kalubarme R. S., Park G. E., Jung K. N., Shin K. H., Ryu W. H., Park C. J. - LaNi x Co 1-x O 3-δ Perovskites as Catalyst Material for Non-Aqueous Lithium-Oxygen Batteries, J. Electrochem Soc. 161 (6) (2014) A880-9.
15. de Sá M. H. - Electrochemical Devices to Power a Sustainable Energy Transition-An Overview of Green Hydrogen Contribution, Appl. Sci. 14 (5) (2024).
16. Kostopoulou A., Vernardou D., Savva K., Stratakis E. - All-inorganic lead halide perovskite nanohexagons for high performance air-stable lithium batteries, Nanoscale 11 (3) (2019) 882-9.
17. Byun S., Park J., Appiah W. A., Ryou M. H., Lee Y. M. - The effects of humidity on the self-discharge properties of Li(Ni1/3Co1/3Mn1/3)O2/graphite and LiCoO2/graphite lithium-ion batteries during storage, RSC Adv. 7 (18) (2017) 10915-21.
18. Nurherdiana S. D., Khoiroh N., Malisa A., Muhamad R., Prasetyo W., Hafiz M., et al. - Study of microstructure modification on La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) asymmetric flat membrane 15 (4) (2019) 498-503.
19. Iqbal R. M., Nurherdiana S. D., Hartanto D., Othman M. H. D., Fansuri H. - Morphological control of La0.7Sr0.3Co0.2Fe0.8O3-δ and La0.7Sr0.3MnO3-δ catalytic membrane using PEG-H2O additive, IOP Conf Ser. Mater. Sci. Eng. 348 (1) (2018) 1-8.
20. Utomo W. P., Wijayanti A. S., Nurherdiana S. D., Iqbal R. M., Hartanto D., Fansuri H. - Preparation and Morphological Property of Co3O4/BaxSr1-xCo0.8Fe0.2O3-δ (x = 0.5-0.7) Membranes using Starch as Binder Agent, IOP Conf. Ser. Mater Sci. Eng. 588 (1) (2019) 1-11.
21. Liu Z., Dong W., Wang J., Dong C., Lin Y., Chen I. W., et al. - Orthorhombic Nb2O5-x for Durable High-Rate Anode of Li-Ion Batteries, iScience 23 (1) (2020).
22. Joy R., Balakrishnan N. T. M., Das A., Shafeek S., Thakur V. K., Zaghib K., et al. - Graphene: Chemistry and Applications for Lithium-Ion Batteries, Electrochem 3 (1) (2022) 143-83.
23. Beladona SUM, Rochliadi A., Patah A. - A facile synthesis of hkust-1 MOF through reductive electrosynthesis method, Key Eng Mater. 874 (2021) KEM:3-12.
24. Beladona S. U. M., Putra R., Alfanaar R., Sylvani M. M, Alyatikah E., Safitri R., et al. - A Review: Development of Photocatalyst Materials and Its Performance for Humic Acid Removal in Peatwater, J. Peat Sci. Innov 1 (1) (2023) 1-15.
25. Sadeghi S., Shiri H. M., Ehsani A., Oftadeh M. - Electrosynthesis of highly pure perovskite type YbMnO3 nanoparticles and its nanocomposite with conjugated polymer: Surface, density of state and electrochemical investigation, Surfaces and Interfaces 24 (2021).
26. Iqbal R. M., Nurherdiana S. D., Sahasrikirana M. S., Harmelia L., Utomo W. P., Setyaningsih E. P., et al. - The Compatibility of NiO, CeO2 and NiO-CeO2 as a Coating on La0.6Sr0.4Co0.2Fe0.8O3-δ, La0.7Sr0.3Co0.2Fe0.8O3-δ and La0.7Sr0.3Mn0.3O3-δ Ceramic Membranes and Their Mechanical Properties, IOP Conf. Ser. Mater Sci. Eng. 2018;367(1):0–7.
27. Liu G., Chen H., Xia L., Wang S., Ding L. X., Li D., et al. - Hierarchical Mesoporous/Macroporous Perovskite La0.5Sr0.5CoO3-x Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries, ACS Appl. Mater Interfaces 7 (40) (2015) 22478-86.
28. Guo M., Li K., Liu L., Zhang H., Hu X., Min X., et al. - Resource utilization of spent ternary lithium-ions batteries: Synthesis of highly active manganese-based perovskite catalyst for toluene oxidation, J. Taiwan Inst. Chem. Eng. [Internet] 102 (2019) 268-75. doi.org/10.1016/j.jtice.2019.06.012
29. Henao J., Pacheco Y., Martinez-Gomez L. - Perovskite Materials in Batteries, In: Materials Horizons: From Nature to Nanomaterials [Internet], 2020, pp. 153-73. http://link.springer.com/10.1007/978-981-15-1267-4_6
30. Hossain K. M., Zahid Hasan M., Lokman Ali M. - Understanding the influences of Mg doping on the physical properties of SrMoO3 perovskite, Results Phys., 2020, pp. 19.
31. Lu F., Wang Y., Jin C., Li F., Yang R., Chen F. - Microporous La0.8Sr0.2MnO3 perovskite nanorods as efficient electrocatalysts for lithium-air battery, J. Power Sources [Internet] 293 (2015) 726-33. doi.org/10.1016/j.jpowsour.2015.06.022
32. Xu J. J., Wang Z. L., Xu D., Meng F. Z., Zhang X. B. - 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance, Energy Environ Sci. 7 (7) (2014) 2213-9.
33. Cheng J., Jiang Y., Zhang M., Zou L., Huang Y., Wang Z., et al. - Perovskite-type La0.8Sr0.2Co0.8Fe0.2O3 with uniform dispersion on N-doped reduced graphene oxide as an efficient bi-functional Li-O2 battery cathode, Phys. Chem. Chem. Phys. 19 (16) (2017) 10227-30.
34. Zhao Y., Liu T., Shi Q., Yang Q., Li C., Zhang D., et al. - Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries. Green Energy Environ. 2018;3(1):78–85.
35. Imanishi N., Yamamoto O. - Perspectives and challenges of rechargeable lithium–air batteries. Mater Today Adv., 2019, p. 4.
36. Li Z., Li M., Zhu Z. - Perovskite Cathode Materials for Low-Temperature Solid Oxide Fuel Cells: Fundamentals to Optimization [Internet]. Vol. 5, Electrochemical Energy Reviews, Springer Singapore, 2022, pp. 263-311. Available from: https://doi.org/ 10.1007/s41918-021-00098-3
37. Sun C., Hui R., Roller J. - Cathode materials for solid oxide fuel cells: A review, J. Solid State Electrochem 14 (7) (2010) 1125-44.
38. Habibie K., Syifa N. A., Bahtiar A. - Pengaruh Penyisipan Ion Bromida Terhadap Sifat Optik Dan Struktur Kristal Lapisan Tipis Perovskite Halida Campuran MAPbBrXI3-X, J. Mater dan Energi Indones [Internet] 9 (2) (2019) 71-8. Available from: http://jurnal.unpad.ac.id/jmei/article/view/26275%0Ahttps://jurnal.unpad.ac.id/jmei/article/viewFile/26275/12822
39. Park H. W., Lee D. U., Zamani P., Seo M. H., Nazar L. F., Chen Z. - Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries, Nano Energy 10 (2014) 192-200.
40. Bahtiar A., Syifa N. A., Nurazizah E. S., Safriani L. - Sifat Optik dan Struktur Kristal Material Perovskite yang Disintesis dari Baterai Bekas Mobil, J. Ilmu dan Inov Fis. 1 (2) (2017) 8-15.
41. Yang Y., Yin W., Wu S., Yang X., Xia W., Shen Y., et al. - Perovskite-type LaSrMnO electrocatalyst with uniform porous structure for an efficient Li-O2 battery cathode, ACS Nano 10 (1) (2016) 1240-8.
42. Ilham A. M., Khoiroh N., Jovita S., Iqbal R. M., Harmelia L., Nurherdiana S. D., et al. -Morphological and Physical Study of La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) Flat Membranes Modified by Polyethylene Glycol (PEG), J. Appl. Membr. Sci. Technol. 22 (2) (2018) 119-30.
43. Nurherdiana S. D., Nikmatin S., Iqbal R. M., Mutya S. S., Wahyu P. U., Syafsir A., et al. - Preparation of La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) by combination of mechanochemical and solid state reaction, Key Eng. Mater. 744 (2017) 399-403.
44. Yan S., Xue Y., Li S., Shao G., Liu Z. - Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core-Shell Materials by Adjusting the Interface for Metal-Air Batteries, ACS Appl. Mater Interfaces 11 (29) (2019) 25870-81.
45. Im W. Bin, Lee J. won - Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode, ACS Appl. Mater. Interfaces 3 (2013) 2-7.
46. Nurherdiana S. D., Etriana R., Iqbal R. M., Utomo W. P., Fansuri H. - Effect of the sintering process on the morphology and mechanical properties of La0.6Sr0.4Co0.2Fe0.8O3-δ asymmetric flat membranes prepared by the phase inversion method, Ceram - Silikaty 63 (3) (2019) 305-14.
47. Tan P., Liu M., Shao Z., Ni M. - Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium–Oxygen Batteries, Adv. Energy Mater 7 (13) (2017) 1-23.
48. Han C. G., Zhu C., Aoki Y., Habazaki H., Akiyama T. - MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis, Green Energy Environ 2 (4) (2017) 377-86.
49. Hu Q., Yue B., Shao H., Yang F., Wang J., Wang Y., et al. - Facile syntheses of perovskite type LaMO3 (M=Fe, Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. J Alloys Compd. 2021;852.
50. Xiang F, Chen X, Yu J, Ma W, Li Y, Yang N. Synthesis of three-dimensionally ordered porous perovskite type LaMnO3 for Al-air battery, J. Mater Sci. Technol [Internet] 34 (9) (2018) 1532-7. Available from: https://doi.org/10.1016/j.jmst.2018.01.010
51. Arfianto D. F., Fahmi D., Asfani D. A. - Pemantauan, Proteksi, dan Ekualisasi Baterai Lithium-Ion Tersusun Seri Menggunakan Konverter Buck-Boost dan LC Seri dengan Kontrol Synchronous Phase Shift, J. Tek ITS 5 (2) (2016).
52. Satriady A., Alamsyah W., Saad A. H. I., Hidayat S. - Pengaruh Luas Elektroda Terhadap Kartakteristik Baterai LiFePO 4, J. Mater dan Energi Indonesa 6 (2) (2016) 43-8.
53. Ramar A., Wang F. M. - Emerging anode and cathode functional materials for lithium-ion batteries. Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, Elsevier Inc. (2020) 465-491.
54. Warner J. T. - Lithium-ion battery operation, Lithium-Ion Battery Chemistries, 2019, pp. 43-77.
55. Warner J. T. - Lithium-ion battery chemistries: A primer, Lithium-Ion Battery Chemistries: A Primer, 2019, pp. 1-353.
56. Liang Y., Ji L., Guo B., Lin Z., Yao Y., Li Y., et al. - Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators, J. Power Sources 196 (1) (2011) 436-41.
57. Xia H. R., Sun W. T., Peng L. M. - Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries, Chem. Commun. 51 (72) (2015) 13787-90.
58. Dawson J. A., Naylor A. J., Eames C., Roberts M., Zhang W., Snaith H. J., et al. -Mechanisms of Lithium Intercalation and Conversion Processes in Organic-Inorganic Halide Perovskites, ACS Energy Lett. 2 (8) (2017) 1818-24.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.