Bio-based nanomaterials and their biomedical applications: a short review

Author affiliations

Authors

  • Nur Atirah Afifah Sezalia Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Jejawi, Arau, Perlis, Malaysia https://orcid.org/0000-0003-2192-0917
  • Hui Lin Ong Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), 02600 Jejawi, Arau, Perlis, Malaysia https://orcid.org/0000-0002-3982-9938
  • Al Rey Villagracia Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines https://orcid.org/0000-0002-9598-0069
  • Tuan-Dung Hoang School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam https://orcid.org/0000-0002-0244-2828

DOI:

https://doi.org/10.15625/2525-2518/19824

Keywords:

hybrid nanomaterials, medical application, nanocellulose, biosensors, carbon quantum dots

Abstract

Recent advancements in biomedical technologies have led to the exploration of bio-based nanomaterials, which offer exceptional properties such as high surface area, biocompatibility, and environmental friendliness. Additionally, the bio-based nanomaterials are widely available and provide a sustainable architecture for various applications. This review highlights three distinct nanomaterials synthesized from and/or with bio-sources: nanocellulose, silver nanoparticles, and carbon dots/carbon quantum dots, representing natural polymers, metallic nanoparticles, and organic nanoparticles, respectively. This review discusses their synthesis methods and their potential applications in tissue engineering, wound healing, and biosensing. The review also includes an outlook on the utilization and challenges of these nanomaterials in biomedical applications.

Downloads

Download data is not yet available.

References

Abdullaeva Z. - Nano-and biomaterials: compounds, properties, characterization, and applications, John Wiley & Sons, 2017.

Dolez P. I. - Nanomaterials Definitions, Classifications, and Applications, In Nanoengineering: Global Approaches to Health and Safety Issues, Elsevier, 2015, pp. 3-40. https://doi.org/10.1016/B978-0-444-62747-6.00001-4

Malhotra B. D. and Ali M. A. - Nanomaterials in Biosensors. In Nanomaterials for Biosensors, Elsevier, 2018, pp. 1-74. https://doi.org/10.1016/b978-0-323-44923-6.00001-7

Nikzamir M., Akbarzadeh A., and Panahi Y. - An overview on nanoparticles used in biomedicine and their cytotoxicity, J. Drug Deliv. Sci. Tec. 61 (2021) 102316. https://doi.org/10.1016/j.jddst.2020.102316

Hoang T. D., Bandh S. A., Malla F. A., Qayoom I., Bashir S., Peer S. B., and Halog A. - Carbon-Based Synthesized Materials for CO2 Adsorption and Conversion: Its Potential for Carbon Recycling, Recycling 8 (4) (2023) (2023) 1-18. https://doi.org/10.3390/ recycling8040053

Sezali N. A. A., Ong H. L., Villagracia A. R., and Hoang T. D. - Bio-based nanomaterials for energy application: A review, Vietnam Journal of Chemistry 62 (1) (2024) 1-12. https://doi.org/10.1002/vjch.202300158

Ferreira F. V., Otoni C. G., De France K. J., Barud H. S., Lona L. M. F., Cranston E. D., and Rojas O. J. - Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering, Mater. Today 37 (2020) 126-141. https://doi.org/10.1016/J.MATTOD.2020.03.003

Lasrado D., Ahankari S., and Kar K. - Nanocellulose-based polymer composites for energy applications - A review, J. Appl. Polym. Sci. 137 (27) (2020) 1-14. https://doi.org/ 10.1002/app.48959

Nuruddin M., Hosur M., Uddin M. J., Baah D., and Jeelani S. - A novel approach for extracting cellulose nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment, J. Appl. Polym. Sci. 133 (9) (2016) 42990. https://doi.org/ 10.1002/app.42990

Rajinipriya M., Nagalakshmaiah M., Robert M., and Elkoun S. - Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review, ACS Sustain. Chem. Eng. 6 (3) (2018) 2807-2828. https://doi.org/10.1021/acssuschemeng.7b03437

Isogai A., Saito T., and Fukuzumi H. - TEMPO-oxidized cellulose nanofibers, Nanoscale 3 (1) (2011) 71-85. https://doi.org/10.1039/c0nr00583e

Benhamou K., Dufresne A., Magnin A., Mortha G., and Kaddami H. - Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time, Carbohyd. Polym. 99 (2014) 74-83. https://doi.org/10.1016/ j.carbpol.2013.08.032

Kanai N., Honda T., Yoshihara N., Oyama T., Naito A., Ueda K., and Kawamura I. - Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their composite films with poly(vinyl alcohol): a new non-wood source, Cellulose 27 (9) (2020) 5017-5028. https://doi.org/10.1007/s10570-020-03113-w

Sofla M. R. K., Brown R. J., Tsuzuki T., and Rainey T. J. - A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods, Adv. Nat. Sci-Nanosci. 7 (3) (2016) 35004. https://doi.org/10.1088/2043-6262/7/3/035004

Saelee K., Yingkamhaeng N., Nimchua T., and Sukyai P. - An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization, Ind. Crop. Prod. 82 (2016) 149-160. https://doi.org/ 10.1016/j.indcrop.2015.11.064

Cheng, Z., Li, J., Wang, B., Zeng, J., Xu, J., Zhu, S., Duan, C., & Chen, K. Comparative study on properties of nanocellulose derived from sustainable biomass resources. Cellulose 29(13) (2022) 7083–7098. https://doi.org/10.1007/s10570-022-04717-0

Hu H., Catchmark J. M., and Demirci A. - Co-culture fermentation on the production of bacterial cellulose nanocomposite produced by Komagataeibacter hansenii, Carbohyd. Polym. Tech. 2 (2021) 100028. https://doi.org/10.1016/j.carpta.2020.100028

Güzel M. and Akpınar Ö. - Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016, Int. J. Biol. Macromol. 162 (2020) 1597-1604. https://doi.org/10.1016/j.ijbiomac.2020.08.049

Volova T. G., Prudnikova S. V., Sukovatyi A. G., and Shishatskaya E. I. - Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068, Appl. Microbiol. Biot. 102 (17) (2018) 7417-7428. https://doi.org/10.1007/s00253-018-9198-8

Barshan S., Rezazadeh-Bari M., Almasi H., and Amiri S. - Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium, Int. J. Biol. Macromol. 136 (2019) 1188-1195. https://doi.org/10.1016/j.ijbiomac.2019.06.192

Beck F., Loessl M., and Baeumner A. J. - Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care, Microchim. Acta 190 (3) (2023). https://doi.org/10.1007/s00604-023-05666-6

Naganthran A., Verasoundarapandian G., Khalid F. E., Masarudin M. J., Zulkharnain A., Nawawi N. M., Karim M., C. Abdullah C. A., and Ahmad S. A. - Synthesis, Characterization and Biomedical Application of Silver Nanoparticles, Materials 15 (2) (2022) 1-43. https://doi.org/10.3390/ma15020427

Vanlalveni C., Lallianrawna S., Biswas A., Selvaraj M., Changmai B., and Rokhum S. L. - Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature, RSC Adv. 11(5) (2021) 2804-2837. https://doi.org/10.1039/D0RA09941D

Hemlata Meena P. R., Singh A. P., and Tejavath K. K. - Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines, ACS Omega 5 (10) (2020) 5520-5528. https://doi.org/10.1021/acsomega.0c00155

Chakravarty A., Ahmad I., Singh P., Ud Din Sheikh M., Aalam G., Sagadevan S., and Ikram S. - Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity, Chem. Phys. Lett. 795 (2022) 139493. https://doi.org/ 10.1016/j.cplett.2022.139493

Katta V. K. M., and Dubey R. S. - Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties, Mater. Today-Proc. 45 (2021) 794-798. https://doi.org/10.1016/ j.matpr.2020.02.809

Zamarchi F. and Vieira I. C. - Determination of paracetamol using a sensor based on green synthesis of silver nanoparticles in plant extract, J. Pharmaceut. Biomed. 196 (2021) 113912. https://doi.org/10.1016/j.jpba.2021.113912

Rodríguez-Acosta H., Tapia-Rivera J. M., Guerrero-Guzmán A., Hernández-Elizarraráz E., Hernández-Díaz J. A., Garza-García J. J. O., Pérez-Ramírez P. E., Velasco-Ramírez S. F., Ramírez-Anguiano A. C., Velázquez-Juárez G., Velázquez-López J. M., Sánchez-Toscano Y. G., García-Morales S., Flores-Fonseca M. M., García-Bustos D. E., Sánchez-Chiprés D. R., and Zamudio-Ojeda A. - Chronic wound healing by controlled release of chitosan hydrogels loaded with silver nanoparticles and calendula extract, J. Tissue Viability 31 (1) (2022) 173-179. https://doi.org/10.1016/j.jtv.2021.10.004

Gupta I., Kumar A., Bhatt A. N., Sapra S., and Gandhi S. - Green Synthesis-Mediated Silver Nanoparticles Based Biocomposite Films for Wound Healing Application, J. Inorg. Organomet P 32 (8) (2022) 2994-3011. https://doi.org/10.1007/s10904-022-02333-w

Asefian S. and Ghavam M. - Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants, BMC Biotechnol. 24 (1) (2024) 5. https://doi.org/10.1186/s12896-023-00828-z

Panja A., Mishra A. K., Dash M., Pandey N. K., Singh S. K., and Kumar B. - Silver nanoparticles – a review, Eur. J. Med. Oncol. 5 (2) (2021) 95-102. https://doi.org/ 10.14744/ejmo.2021.59602

Maghimaa M., and Alharbi S. A. - Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity, J. Photoch. Photobio B 204 (2020) 111806. https://doi.org/10.1016/ j.jphotobiol.2020.111806

Rathore H. S., Sivagnanam U. T., Abraham L. S., Prakash D., Panda R. C., and Senthilvelan T. - Green synthesized silver nanoparticles-impregnated novel gum kondagogu–chitosan biosheet for tissue engineering and wound healing applications, Polymer Bulletin 79 (9) (2022) 7215-7227. https://doi.org/10.1007/s00289-021-03832-5

Kasinathan K., Samayanan S., Marimuthu K., and Yim J. H. - Green synthesis of multicolour fluorescence carbon quantum dots from sugarcane waste: Investigation of mercury (II) ion sensing, and bio-imaging applications, Appl. Surf. Sci. 601 (2022) 154266. https://doi.org/10.1016/j.apsusc.2022.154266

Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., and Scrivens W. A. - Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126 (40) (2004) 12736-12737. https://doi.org/10.1021/ ja040082h

Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., and Xie S. Y. - Quantum-sized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc. 128 (24) (2006) 7756-7757. https://doi.org/10.1021/ja062677d

Pourmadadi M., Rahmani E., Rajabzadeh-Khosroshahi M., Samadi A., Behzadmehr R., Rahdar A., and Ferreira L. F. R. - Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review, J. Drug Deliv. Sci. Tec. 80 (2023) 104156. https://doi.org/10.1016/j.jddst.2023.104156

Barrientos K., Arango J. P., Moncada M. S., Placido J., Patiño J., Macías S. L., S. L., Maldonado C., Torijano S., Bustamante S., Londoño M. E., and Jaramillo M. - Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 251 (2023) 123791. https://doi.org/10.1016/J.TALANTA.2022.123791

Ornelas-Hernández L. F., Garduno-Robles A., and Zepeda-Moreno A. - A Brief Review of Carbon Dots–Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications, Nanoscale Res. Lett. 17 (1) (2022) 1-23. https://doi.org/ 10.1186/s11671-022-03691-7

Zhao X., Liao S., Wang L., Liu Q., and Chen X. - Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion, Talanta 201 (2019) 1-8. https://doi.org/10.1016/j.talanta.2019.03.095

Singh H., Bamrah A., Khatri M., and Bhardwaj N. - One-pot hydrothermal synthesis and characterization of carbon quantum dots (CQDs), Mater. Today-Proc. 28 (2020) 1891-1894. https://doi.org/10.1016/j.matpr.2020.05.297

Arumugham T., Alagumuthu M., Amimodu R. G., Munusamy S., and Iyer S. K. - A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications, Sus. Mater. Tech. 23 (2020) e00138. https://doi.org/10.1016/j.susmat.2019.e00138

Jagannathan M., Dhinasekaran D., Soundharraj P., Rajendran S., Vo D. V. N., Prakasarao A., and Ganesan S. - Green synthesis of white light emitting carbon quantum dots: Fabrication of white fluorescent film and optical sensor applications, J. Hazard. Mater. 416(October 2020) (2021) 125091. https://doi.org/10.1016/j.jhazmat.2021.125091

Khan Z. M. S. H., Rahman R. S., Shumaila Islam S., and Zulfequar M. - Hydrothermal treatment of red lentils for the synthesis of fluorescent carbon quantum dots and its application for sensing Fe3+, Opt. Mater. 91 (2019) 386-395. https://doi.org/10.1016/ j.optmat.2019.03.054

Atchudan R., Edison T. N. J. I., Perumal S., Clament Sagaya Selvam N., and Lee Y. R. - Green synthesized multiple fluorescent nitrogen-doped carbon quantum dots as an efficient label-free optical nanoprobe for in vivo live-cell imaging, J. Photoch. Photobio. A. 372 (2019) 99-107. https://doi.org/10.1016/j.jphotochem.2018.12.011

Atchudan R., Jebakumar Immanuel Edison T. N., Shanmugam M., Perumal S., Somanathan T., and Lee Y. R. - Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging, Physica E. 126 (2021) 114417. https://doi.org/10.1016/j.physe.2020.114417

Chaudhary N., Gupta P. K., Eremin S., and Solanki P. R. - One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions, J. Environ. Chem. Eng. 8 (3) (2020) 103720. https://doi.org/ 10.1016/j.jece.2020.103720

Marouzi S., Darroudi M., Hekmat A., Sadri K., and Kazemi Oskuee R. - One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects, J. Environ. Chem. Eng. 9 (4) (2021) 105461. https://doi.org/10.1016/j.jece.2021.105461

Zhang Y., Li P., Yan H., Guo Q., Xu Q., and Su W. - Green synthesis and multifunctional applications of nitrogen-doped carbon quantum dots via one-step hydrothermal carbonization of Curcuma zedoaria, Anal. Bioanal. Chem. 415 (10) (2023) 1917-1931. https://doi.org/10.1007/s00216-023-04603-z

Zhang Q., Zhang X., Bao L., Wu Y., Jiang L., Zheng Y., Wang Y., and Chen Y. - The application of green-synthesis-derived carbon quantum dots to bioimaging and the analysis of mercury(II), J. Anal. Methods Chem. 2019 (II) (2019). https://doi.org/ 10.1155/2019/8183134

Hoan B. T., Tam P. D., and Pham V. H. - Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice, J. Nanotech. 2019 (2019). https://doi.org/10.1155/ 2019/2852816

Malavika J. P., Shobana C., Sundarraj S., Ganeshbabu M., Kumar P., and Selvan R. K. - Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. Biomater, Adv. 136 (2022) 212756. https://doi.org/10.1016/j.bioadv. 2022.212756

Manikandan V. and Lee N. Y. - Green synthesis of carbon quantum dots and their environmental applications, Environ. Res. 212 (2022) 113283. https://doi.org/10.1016/ j.envres.2022.113283

Terzopoulou Z., Zamboulis A., Koumentakou I., Michailidou G., Noordam M. J., and Bikiaris D. N. - Biocompatible Synthetic Polymers for Tissue Engineering Purposes, Biomacromolecules 23 (2022) 1841-1863. https://doi.org/10.1021/acs.biomac.2c00047

Bonnans C., Chou J., and Werb Z. - Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Bio. 15 (12) (2014) 786-801. https://doi.org/10.1038/ nrm3904

Pfisterer K., Shaw L. E., Symmank D., and Weninger W. - The Extracellular Matrix in Skin Inflammation and Infection, Front. Cell Dev. Bio. 9 (2021) 1578. https://doi.org/ 10.3389/fcell.2021.682414

Habibzadeh F., Sadraei S. M., Mansoori R., Singh Chauhan N. P., and Sargazi G. - Nanomaterials supported by polymers for tissue engineering applications: A review, Heliyon 8 (12) (2022) e12193. https://doi.org/10.1016/j.heliyon.2022.e12193

Hasanzadeh R., Azdast T., Mojaver M., Darvishi M. M., and Park C. B. - Cost-effective and reproducible technologies for fabrication of tissue engineered scaffolds: The state-of-the-art and future perspectives, Polymer 244 (2022) 124681. https://doi.org/10.1016/ j.polymer.2022.124681

Chan B. P. and Leong K. W. - Scaffolding in tissue engineering: General approaches and tissue-specific considerations, Eur. Spine J. 17 (4) (2008) 467-479. https://doi.org/ 10.1007/s00586-008-0745-3

Zhang Z., Feng Y., Wang L., Liu D., Qin C., and Shi Y. - A review of preparation methods of porous skin tissue engineering scaffolds, Mater. Today Comm. 32 (2022) 104109. https://doi.org/10.1016/J.MTCOMM.2022.104109

Amaral H. R., Wilson J. A., do Amaral R. J. F. C., Pasçu I., de Oliveira F. C. S., Kearney C. J., Freitas J. C. C., and Heise A. - Synthesis of bilayer films from regenerated cellulose nanofibers and poly(globalide) for skin tissue engineering applications, Carbohyd. Polym. 252 (2021) 117201. https://doi.org/10.1016/j.carbpol.2020.117201

Abouzeid R. E., Khiari R., Beneventi D., and Dufresne A. - Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering, Biomacromolecules 19 (11) (2018) 4442–4452. https://doi.org/ 10.1021/acs.biomac.8b01325

Mohammadalipour M., Karbasi S., Behzad T., Mohammadalipour Z., and Zamani M. - Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications, Int. J. Biol. Macromol. 220 (2022) 1402-1414. https://doi.org/ 10.1016/j.ijbiomac.2022.09.118

Shaheen T. I., Montaser A. S., and Li S. - Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering, Int. J. Biol. Macromol. 121 (2019) 814-821. https://doi.org/10.1016/j.ijbiomac.2018.10.081

Patel D. K., Dutta S. D., Hexiu J., Ganguly K., and Lim K. T. - Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering, Int. J. Biol. Macromol. 162 (2020) 1429-1441. https://doi.org/10.1016/ j.ijbiomac.2020.07.246

Chen L., Wang Q., Hirth K., Baez C., Agarwal U. P., and Zhu J. Y. - Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis Cellulose 22 (3) (2015) 1753-1762. https://doi.org/10.1007/s10570-015-0615-1

Ghorbani M., Roshangar L., and Soleimani Rad J. - Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering, Eur. Polym. J. 130 (2020) 109697. https://doi.org/ 10.1016/j.eurpolymj.2020.109697

Hasan A., Waibhaw G., Saxena V., and Pandey L. M. - Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications, Int. J. Biol. Macromol. 111 (2018) 923-934. https://doi.org/10.1016/j.ijbiomac.2018.01.089

Geng B., Li P., Fang F., Shi W., Glowacki J., Pan D., and Shen L. - Antibacterial and osteogenic carbon quantum dots for regeneration of bone defects infected with multidrug-resistant bacteria, Carbon 184 (2021) 375-385. https://doi.org/10.1016/j.carbon. 2021.08.040

Han G. and Ceilley R. - Chronic Wound Healing: A Review of Current Management and Treatments, Adv. Ther. 34 (3) (2017) 599-610. https://doi.org/10.1007/s12325-017-0478-y

Biswas M. C., Jony B., Nandy P. K., Chowdhury R. A., Halder S., Kumar D., Ramakrishna S., Hassan M., Ahsan M. A., Hoque M. E., and Imam M. A. - Recent Advancement of Biopolymers and Their Potential Biomedical Applications, J. Polym. Environ 30 (1) (2022) 51-74. https://doi.org/10.1007/s10924-021-02199-y

Kirsner R. S. and Eaglstein W. H. - The wound healing process, Dermatol. Clin. 11 (4) (1993) 629-640. https://doi.org/10.1016/s0733-8635(18)30216-x

Menke N. B., Ward K. R., Witten T. M., Bonchev D. G., and Diegelmann R. F. - Impaired wound healing, Clin. Dermatol. 25(1) (2007) 19-25. https://doi.org/10.1016/ j.clindermatol.2006.12.005

Lazarus G. S., Cooper D. M., Knighton D. R., Margolis D. J., Percoraro R. E., Rodeheaver G., and Robson M. C. - Definitions and guidelines for assessment of wounds and evaluation of healing, Wound Repair Regen. 2(3) (1994) 165-170. https://doi.org/ 10.1046/j.1524-475X.1994.20305.x

Shefa A. A., Amirian J., Kang H. J., Bae S. H., Jung H. Il, Choi H. Jun, Lee S. Y., and Lee B. T. - In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing, Carbohyd. Polym. 177 (2017) 284-296. https://doi.org/10.1016/j.carbpol.2017.08.130

Yu R., Zhang H., and Guo B. - Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering, Nano-Micro Lett. 14 (2022) 1-46. https://doi.org/10.1007/s40820-021-00751-y

Qin P., Tang J., Sun D., Yang Y., Liu N., Li Y., Fu Z., Wang Y., Li C., Li X., Zhang Y., Liu Y., Wang S., Sun J., Deng Z., He L., Wang Y., and Yang X. - Zn2+Cross-Linked Alginate Carrying Hollow Silica Nanoparticles Loaded with RL-QN15 Peptides Provides Promising Treatment for Chronic Skin Wounds, ACS Appl. Mater. Inter. 14 (26) (2022) 29491-29505. https://doi.org/10.1021/acsami.2c03583

Jose J., Pai A. R., Gopakumar D. A., Dalvi Y., Rubi V., Bhat S. G., Pasquini D., Kalarikkal N., and Thomas S. - Novel 3D porous aerogels engineered at nano scale from cellulose nano fibers and curcumin: An effective treatment for chronic wounds, Carbohyd. Polym. 287 (2022) 119338. https://doi.org/10.1016/j.carbpol.2022.119338

Koehler J., Brandl F. P., and Goepferich A. M. - Hydrogel wound dressings for bioactive treatment of acute and chronic wounds, Eur. Polym. J. 100 (2018) 1-11. https://doi.org/ 10.1016/j.eurpolymj.2017.12.046

Jiji S., Udhayakumar S., Maharajan K., Rose C., Muralidharan C., and Kadirvelu K. - Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing, Carbohyd. Polym. 245 (2020) 116573. https://doi.org/10.1016/j.carbpol.2020.116573

Ahmed J., Gultekinoglu M., and Edirisinghe M. - Bacterial cellulose micro-nano fibres for wound healing applications, Biotechnol. Adv. 41 (2020) 107549. https://doi.org/10.1016/ j.biotechadv.2020.107549

Jankau J., Błażyńska‐Spychalska A., Kubiak K., Jędrzejczak-Krzepkowska M., Pankiewicz T., Ludwicka K., Dettlaff A., and Pęksa R. - Bacterial Cellulose Properties Fulfilling Requirements for a Biomaterial of Choice in Reconstructive Surgery and Wound Healing, Front. Bioeng. Biotech. 9 (2022) 1492. https://doi.org/10.3389/ fbioe.2021.805053

Deng L., Wang B., Li W., Han Z., Chen S., and Wang H. - Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing, Int. J. Biol. Macromol. 217 (2022) 77-87. https://doi.org/ 10.1016/j.ijbiomac.2022.07.017

Mao L., Wang L., Zhang M., Ullah M. W., Liu L., Zhao W., Li Y., Q. Ahmed A. A., Cheng H., Shi Z., and Yang G. - In Situ Synthesized Selenium Nanoparticles-Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Anti-Inflammatory Capabilities for Facilitating Skin Wound Healing, Adv. Healthc. Mater. 10(14) (2021) 2100402. https://doi.org/10.1002/adhm.202100402

Zmejkoski D. Z., Marković Z. M., Mitić D. D., Zdravković N. M., Kozyrovska N. O., Bugárová N., and Todorović Marković B. M. - Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing, J. Biomed. Mater. Res. B. 110 (8) (2022) 1796-1805. https://doi.org/10.1002/jbm.b.35037

Cui F., Sun J., Ji J., Yang X., Wei K., Xu H., Gu Q., Zhang Y., and Sun X. - Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing, J. Hazard. Mater. 406 (2021) 124330. https://doi.org/10.1016/j.jhazmat.2020.124330

Huang B., Liu X., Li Z., Zheng Y., Wai Kwok Yeung K., Cui Z., Liang Y., Zhu S., and Wu S. - Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds, Chem. Eng. J. 414 (2021) 128805. https://doi.org/10.1016/j.cej.2021.128805

Alharbi N. S., Alsubhi N. S., and Felimban A. I. - Green synthesis of silver nanoparticles using medicinal plants: Characterization and application, J. Radiat. Res. Appl. Sci. 15 (3) (2022) 109-124. https://doi.org/10.1016/j.jrras.2022.06.012

Thvenot D. R., Toth K., Durst R. A., and Wilson G. S. - Electrochemical biosensors: Recommended definitions and classification (Technical Report), Pure Appl. Chem. 71 (12) (1999) 2333-2348. https://doi.org/10.1351/pac199971122333

Allouzi M. M. A., Allouzi S., Al-Salaheen B., Khoo K. S., Rajendran S., Sankaran R., Sy-Toan N., and Show P. L. - Current advances and future trend of nanotechnology as microalgae-based biosensor, Biochem. Eng. J. 187 (2022) 108653. https://doi.org/ 10.1016/j.bej.2022.108653

Tharani S., Durgalakshmi D., Balakumar S., and Rakkesh R. A. - Futuristic Advancements in Biomass-Derived Graphene Nanoassemblies: Versatile Biosensors for Point-of-Care Devices, ChemistrySelect 7 (40) (2022) e202203603. https://doi.org/ 10.1002/slct.202203603

Purohit B., Vernekar P. R., Shetti N. P., and Chandra P. - Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis, Sensor. Int. 1 (2020) 100040. https://doi.org/10.1016/J.SINTL.2020.100040

Chadha U., Bhardwaj P., Agarwal R. R., Rawat P., Agarwal R. R., Gupta I., Panjwani M., Singh S., Ahuja C., Selvaraj S. K., Banavoth M., Sonar P., Badoni B., and Chakravorty A. - Recent progress and growth in biosensors technology: A critical review, J. Ind. Eng. Chem. 109 (2022) 21-51. https://doi.org/10.1016/j.jiec.2022.02.010

Sumitha M. S. and Xavier T. S. - Recent advances in electrochemical biosensors – A brief review, Hybrid Adv. 2 (2023) 100023. https://doi.org/10.1016/j.hybadv.2023.100023

Kumar S., Ngasainao M. R., Sharma D., Sengar M., Gahlot A. P. S., Shukla S., and Kumari P. - Contemporary nanocellulose-composites: A new paradigm for sensing applications, Carbohyd. Polym. 298 (2022) 120052. https://doi.org/10.1016/j.carbpol. 2022.120052

Pan Y., Qin Z., Kheiri S., Ying B., Pan P., Peng R., and Liu X. - Optical Printing of Conductive Silver on Ultrasmooth Nanocellulose Paper for Flexible Electronics, Adv. Eng. Mater. 24 (7) (2022) 1-9. https://doi.org/10.1002/adem.202101598

Neubauerova K., Carneiro M. C. C. G., Rodrigues L. R., Moreira F. T. C., and Sales M. G. F. - Nanocellulose- based biosensor for colorimetric detection of glucose, Sensing and Bio-Sensing Research 29 (2020) 100368. https://doi.org/10.1016/j.sbsr.2020.100368

Bandi R., Alle M., Park C. W., Han S. Y., Kwon G. J., Kim N. H., Kim J. C., and Lee S. H. - Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose, Sensor. Actuat. B-Chem. 330 (2021) 129330. https://doi.org/10.1016/j.snb.2020.129330

Bondancia T. J., Soares A. C., Popolin-Neto M., Gomes N. O., Raymundo-Pereira P. A., Barud H. S., Machado S. A. S., Ribeiro S. J. L., Melendez M. E., Carvalho A. L., Reis R. M., Paulovich F. V., and Oliveira O. N. - Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker, Biomater. Adv. 134 (2022) 112676. https://doi.org/10.1016/j.msec.2022.112676

El barghouti M., Akjouj A., and Mir A. - Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications, Vacuum 180 (2020) 109497. https://doi.org/10.1016/j.vacuum.2020.109497

Nishan U., Niaz A., Muhammad N., Asad M., Shah A. ul H. A., Khan N., Khan M., Shujah S., and Rahim A. - Non-enzymatic colorimetric biosensor for hydrogen peroxide using lignin-based silver nanoparticles tuned with ionic liquid as a peroxidase mimic, Arab. J. Chem. 14 (6) (2021) 103164. https://doi.org/10.1016/j.arabjc.2021.103164

Hou L., Huang Y., Hou W., Yan Y., Liu J., and Xia N. - Modification-free amperometric biosensor for the detection of wild-type p53 protein based on the in situ formation of silver nanoparticle networks for signal amplification, Int. J. Biol. Macromol. 158 (2020) 580-586. https://doi.org/10.1016/j.ijbiomac.2020.04.271

Zhang Y., Ding L., Zhang H., Wang P., and Li H. - A new optical fiber biosensor for acetylcholine detection based on pH sensitive fluorescent carbon quantum dots, Sensor. Actuat. B- Chem. 369 (2022) 132268. https://doi.org/10.1016/j.snb.2022.132268

Wei Q., Zhang P., Liu T., Pu H., and Sun D. W. - A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection, Food Chem. 356 (2021) 129668. https://doi.org/10.1016/j.foodchem.2021.129668

Afsharipour R., Haji Shabani A. M., and Dadfarnia S. - A selective off–on fluorescent aptasensor for alpha-fetoprotein determination based on N-carbon quantum dots and oxidized nanocellulose, J. Photoch. Photobio. A. 428 (2022) 113872. https://doi.org/ 10.1016/j.jphotochem.2022.113872

Downloads

Published

16-08-2024

How to Cite

[1]
N. A. A. Sezalia, H. L. Ong, A. R. Villagracia, and T.-D. Hoang, “Bio-based nanomaterials and their biomedical applications: a short review”, Vietnam J. Sci. Technol., vol. 62, no. 4, pp. 615–634, Aug. 2024.

Issue

Section

Review