A snapshot of bacterial endophytes isolated from the roots of Vetiver grass (Chrysopogon zizanioides) grown at Bien Hoa airbase, Dong Nai province

Vu Thi Lan Anh, Nguyen Thi Nhan, Dang Thi Ha Thu, Pham The Hai, Nguyen Quoc Dinh, Ngo Thi Thuy Huong, Tran Van Tuan
Author affiliations

Authors

  • Vu Thi Lan Anh Hanoi University of Mining and Geology, 18 Vien Street, Dong Ngac, North Tu Liem, Ha Noi, Viet Nam; Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam https://orcid.org/0009-0008-0902-1330
  • Nguyen Thi Nhan Faculty of Biology, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
  • Dang Thi Ha Thu Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0009-0005-6310-3861
  • Pham The Hai Faculty of Biology, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
  • Nguyen Quoc Dinh External Engagement Office, Phenikaa University, Yen Nghia, Ha Dong, Ha Noi, 12116, Viet Nam; Environmental Chemistry and Ecotoxicology Lab, Phenikaa, Yen Nghia, Ha Dong, Ha Noi, 12116, Viet Nam
  • Ngo Thi Thuy Huong Environmental Chemistry and Ecotoxicology Lab, Phenikaa, Yen Nghia, Ha Dong, Ha Noi, 12116, Viet Nam; Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha Dong, Ha Noi, 12116, Viet Nam https://orcid.org/0000-0002-1894-2624
  • Tran Van Tuan Faculty of Biology, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam; National Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam https://orcid.org/0000-0003-3916-2624

DOI:

https://doi.org/10.15625/2525-2518/19395

Keywords:

endophytic bacteria, dioxin-contaminated soil, indole acetic acid, plant growth promotion, Vetiver grass

Abstract

Vetiver grass (Chrysopogon zizanioides) is used for phytoremediation of contaminated soil, but the role of its associated endophytic bacteria remains unexplored. This study investigated endophytic bacteria from Vetiver grass grown in dioxin-contaminated soil at Bien Hoa airbase, Vietnam. Sixteen bacterial strains were isolated and identified using 16S rRNA gene sequencing, revealing nine distinct species. Notably, four strains (Klebsiella variicola B1, Enterobacter cloacae B4, B6, and Enterobacter asburiae B11) exhibited high indole acetic acid (IAA) production, a plant growth hormone. Strains K. variicola B1 and E. cloacae B4 also displayed phytase and phosphatase activity, potentially enhancing plant nutrient availability. These IAA-producing strains were further evaluated for their ability to promote tomato plant growth. After 28 days of root inoculation, tomato plants exhibited a 19-22% increase in growth compared to controls. This study highlights the first isolation of endophytic bacteria from Vetiver grass in dioxin-contaminated soil and identifies potential bacterial candidates for plant growth promotion in such environments.

Downloads

Download data is not yet available.

References

Das P., Datta R., Makris K. C., Sarkar D. - Vetiver grass is capable of removing TNT from soil in the presence of urea. Environmental Pollution, 158 (2010) 1980-1983. DOI: https://doi.org/10.1016/j.envpol.2009.12.011

Banerjee R., Goswami P., Pathak K., Mukherjee A. - Vetiver grass: An environment clean-up tool for heavy metal contaminated iron ore mine-soil. Ecological Engineering, 90 (2016) 25-34. DOI: https://doi.org/10.1016/j.ecoleng.2016.01.027

Chen X. W., Wong J. T. F., Wang J.-J., Wong M. H. - Vetiver grass-microbe interactions for soil remediation. Critical Reviews in Environmental Science and Technology, 51 (2020) 897-938. DOI: https://doi.org/10.1080/10643389.2020.1738193

Chen Y., Shen Z., Li X. - The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19 (2004) 1553-1565. DOI: https://doi.org/10.1016/j.apgeochem.2004.02.003

Grover M., Behl T., Virmani T., Bhatia S., Al-Harrasi A., Aleya L. - Chrysopogon zizanioides—a review on its pharmacognosy, chemical composition and pharmacological activities. Environmental Science and Pollution Research, 28 (2021) 44667-44692. DOI: https://doi.org/10.1007/s11356-021-15145-1

Huyen D. T., Igarashi T., Shiraiwa T. - Vertical distribution of dioxins in soil of Bien Hoa airbase, Vietnam. SpringerPlus, 4 (2015) 300. DOI: https://doi.org/10.1186/s40064-015-1064-x

Nguyen Q. D., Ngo H. T. T., Nguyen T. T. T. - Assessment of the potential of Vetiver grass in mitigation of dioxin and arsenic in contaminated soils at Bien Hoa airbase. VNU Journal of Science: Earth and Environmental Sciences, 34 (2018) 45-54.

Munakata Y., Gavira C., Genestier J., Bourgaud F., Hehn A., Slezack-Deschaumes S. - Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiological Research, 243 (2021) 126650. DOI: https://doi.org/10.1016/j.micres.2020.126650

Ho Y.-N., Hsieh J.-L., Huang C.-C. - Construction of a plant–microbe phytoremediation system: Combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresource Technology, 145 (2013) 43-47. DOI: https://doi.org/10.1016/j.biortech.2013.02.051

Ahluwalia O., Singh P. C., Bhatia R. - A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5 (2021) 100032. DOI: https://doi.org/10.1016/j.resenv.2021.100032

Afzal M., Khan Q. M., Sessitsch A. - Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere, 117 (2014) 232-242. DOI: https://doi.org/10.1016/j.chemosphere.2014.06.078

Fadiji A. E., Babalola O. O. - Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi Journal of Biological Sciences, 27 (2020) 3622-3633. DOI: https://doi.org/10.1016/j.sjbs.2020.08.002

Park S., Kim A. L., Hong Y.-K., Shin J.-H., Joo S.-H. - A highly efficient auxin-producing bacterial strain and its effect on plant growth. Journal of Genetic Engineering and Biotechnology, 19 (2021) 179. DOI: https://doi.org/10.1186/s43141-021-00252-w

Liu H., Carvalhais L. C., Crawford M., Singh E., Dennis P. G., Pieterse C. M. J., Schenk P. M. - Inner plant values: diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8 (2017) 2552. DOI: https://doi.org/10.3389/fmicb.2017.02552

Eke P., Kumar A., Sahu K. P., Wakam L. N., Sheoran N., Ashajyothi M., Patel A., Fekam F. B. - Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiological Research, 228 (2019) 126302. DOI: https://doi.org/10.1016/j.micres.2019.126302

Tran V. T., Do T. B. X. L., Nguyen T. K., Vu X. T., Dao B. N., Nguyen H. H. - A simple, efficient and universal method for the extraction of genomic DNA from bacteria, yeasts, molds and microalgae suitable for PCR-based applications. Vietnam Journal of Science, Technology and Engineering, 59 (2017) 66-74. DOI: https://doi.org/10.31276/VJSTE.59(4).66

Chandra S., Askari K., Kumari M. - Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering and Biotechnology, 16 (2018) 581-586. DOI: https://doi.org/10.1016/j.jgeb.2018.09.001

Glickmann E., Dessaux Y. - A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61 (1995) 793-796. DOI: https://doi.org/10.1128/aem.61.2.793-796.1995

Demirkan E., Baygin E., Usta A. - Screening of phytate hydrolysis Bacillus sp. isolated from soil and optimization of the certain nutritional and physical parameters on the production of phytase. Turkish Journal of Biochemistry, 39 (2014) 206-214. DOI: https://doi.org/10.5505/tjb.2014.26817

Nautiyal C. S. - An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, 170 (1999) 265-270. DOI: https://doi.org/10.1016/S0378-1097(98)00555-2

Wei C.-Y., Lin L., Luo L.-J., Xing Y.-X., Hu C.-J., Yang L.-T., Li Y.-R., An Q. - Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biology and Fertility of Soils, 50 (2013) 657-666. DOI: https://doi.org/10.1007/s00374-013-0878-3

Hwang H.-H., Chien P.-R., Huang F.-C., Yeh P.-H., Hung S.-H. W., Deng W.-L., Huang C.-C. - A plant endophytic bacterium Priestia megaterium strain BP-R2 isolated from the halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses. Microorganisms, 10 (2022) 2047. DOI: https://doi.org/10.3390/microorganisms10102047

Fadiji A. E., Ayangbenro A. S., Babalola O. O., Klepac-Ceraj V. - Draft genome sequence of Citrobacter freundii AYS58, a potential plant growth-promoting endophyte. Microbiology Resource Announcements, 12 (2023) e0014223. DOI: https://doi.org/10.1128/mra.00142-23

Panigrahi S., Mohanty S., Rath C. C. - Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. South African Journal of Botany, 134 (2020) 17-26. DOI: https://doi.org/10.1016/j.sajb.2019.09.017

Wu T., Xu J., Xie W., Yao Z., Yang H., Sun C., Li X. - Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Frontiers in Microbiology, 9 (2018) 1087. DOI: https://doi.org/10.3389/fmicb.2018.01087

Kumar N., Dubey R. C. - Plant growth promoting endophytic bacteria Bacillus australimaris BLR41 and Enterobacter kobei BLR45 enhance the growth of medicinal plant Barleria lupulina Lindl. Journal of Pure and Applied Microbiology, 16 (2022) 2647-2658. DOI: https://doi.org/10.22207/JPAM.16.4.32

Oviedo-Pereira D. G., López-Meyer M., Evangelista-Lozano S., Sarmiento-López L. G., Sepúlveda-Jiménez G., Rodríguez-Monroy M. - Enhanced specialized metabolite, trichome density, and biosynthetic gene expression in Stevia rebaudiana (Bertoni) Bertoni plants inoculated with endophytic bacteria Enterobacter hormaechei. PeerJ, 10 (2022) e13675. DOI: https://doi.org/10.7717/peerj.13675

Khaksar G., Treesubsuntorn C., Thiravetyan P. - Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal. Plant Physiology and Biochemistry, 107 (2016) 326-336. DOI: https://doi.org/10.1016/j.plaphy.2016.06.020

Gyaneshwar P., James E. K., Mathan N., Reddy P. M., Reinhold-Hurek B., Ladha J. K. - Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of Bacteriology, 183 (2001) 2634-2645. DOI: https://doi.org/10.1128/JB.183.8.2634-2645.2001

Teale W. D., Paponov I. A., Palme K. - Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 7 (2006) 847-859. DOI: https://doi.org/10.1038/nrm2020

Wagi S., Ahmed A. - Bacillus spp.: potent microfactories of bacterial IAA. PeerJ, 7 (2019) e7258. DOI: https://doi.org/10.7717/peerj.7258

Kim A.-Y., Shahzad R., Kang S.-M., Seo C.-W., Park Y.-G., Park H.-J., Lee I.-J. - IAA-producing Klebsiella variicola AY13 reprograms soybean growth during flooding stress. Journal of Crop Science and Biotechnology, 20 (2017) 235-242. DOI: https://doi.org/10.1007/s12892-017-0041-0

Elhaissoufi W., Ghoulam C., Barakat A., Zeroual Y., Bargaz A. - Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. Journal of Advanced Research, 38 (2022) 13-28. DOI: https://doi.org/10.1016/j.jare.2021.08.014

Singh B., Satyanarayana T. - Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17 (2011) 93-103.

Singh B., Satyanarayana T. - Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology Molecular Biology of Plants, 17 (2011) 93-103. DOI: https://doi.org/10.1007/s12298-011-0062-x

Jorquera M. A., Hernández M. T., Rengel Z., Marschner P., de la Luz Mora M. - Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology Fertility of Soils, 44 (2008) 1025-1034. DOI: https://doi.org/10.1007/s00374-008-0288-0

Downloads

Published

23-05-2024

How to Cite

[1]
T. L. A. Vu, “A snapshot of bacterial endophytes isolated from the roots of Vetiver grass (Chrysopogon zizanioides) grown at Bien Hoa airbase, Dong Nai province”, Vietnam J. Sci. Technol., vol. 62, no. 3, pp. 551–561, May 2024.

Issue

Section

Environment