Aerofoil optimization using SLSQP and validation using numerical and analytical methods

Srinath R., Mukesh R., Inamul Hasan, Radha Krishnan P.
Author affiliations

Authors

  • Srinath R. Department of Aerospace Engineering, Dayananda Sagar University, Bangalore, India
  • Mukesh R. Department of Electronics and Communication Engineering, Saranathan College of Engineering, Tiruchirappalli, India
  • Inamul Hasan Department of Aeronautical Engineering, Ramiah Institute of Technology, Bangalore, India
  • Radha Krishnan P. Department of Aeronautical Engineering, ACS College of Engineering, Bangalore, India

DOI:

https://doi.org/10.15625/2525-2518/19371

Keywords:

Optimization technique, Computational fluid dynamics (CFD), datcom, Validation

Abstract

Aircraft design optimization is one among the research enriched topic in the aerospace industry, with enhancing aircraft performance, safety, and efficiency numerous being the prime focus areas. The work done demonstrates the application of the Sequential Least Squares Programming (SLSQP) technique over a symmetrical aerofoil “NACA 0012” to improve its aerodynamic performance. The optimized aerofoil is validated using Design and Analysis Tools for Composite Aircraft (DATCOM) and Computational Fluid Dynamics (CFD) methods. The study focuses on optimizing the performance of a symmetric aerofoil, where drag minimization is crucial, subject to list constraints, such as in the design of fuel-efficient aircraft. The results reveal, the optimized aerofoil has a significant reduction in drag coefficient of closer to 11 % between 8° and 10° compared to the initial design. The validation using DATCOM and CFD methods confirms the accuracy and usefulness of the optimization results. Validation error values are found to be negligible when compared to the optimization data, coming in at 5.7% and 6.5% for DATCOM and CFD, respectively. The paper highlights that the SLSQP technique is efficient and reliable optimization method for designing high-performance aerofoils.

Downloads

Download data is not yet available.

References

1. Sharma P., Gupta B., Pandey M., Sharma A. K., and Nareliya Mishra R. - Recent advancements in optimization methods for wind turbine aerofoil design: A review, Materials Today: Proceedings, 2020. doi: 10.1016/j.matpr.(2021).02.231.

2. Fatehi M., Nili-Ahmadabadi M., Nematollahi O., Minaiean A., and Kim K. C. - Aerodynamic performance improvement of wind turbine blade by cavity shape optimization, Renew Energy 132 (2019) 773-785, doi: 10.1016/j.renene.2018.08.047.

3. Ayaz Ümütlü, H. C., and Kiral, Z. - Aerofoil shape optimization using Bezier curve and genetic algorithm, Aviation 26 (1) (2022) 32-40… doi: 10.3846/aviation.2022.16471.

4. Song X., Wang L., and Luo X. - Aerofoil optimization using a machine learning-based optimization algorithm, Journal of Physics: Conference Series (2022). doi: 10.1088/1742-6596/2217/1/012009.

5. Mukesh R., Lingadurai K., and Selvakumar U. -Application of nontraditional optimization techniques for aerofoil shape optimization, Modelling and Simulation in Engineering 2012 (2012). doi: 10.1155/2012/636135.

6. Yu J. - Design and Optimization of Wing Structure for a Fixed-Wing Unmanned Aerial Vehicle (UAV), Modern Mechanical Engineering 08 (04) (2018) 249-263, doi:10.4236/ mme.2018.84017.

7. Son S. H., Choi B. L., Won W. J., Lee Y. G., Kim C. W., and Choi D. H. - Wing design optimization for a long-endurance UAV using FSI analysis and the kriging method, International Journal of Aeronautical and Space Sciences 17 (3) (2016). doi:10.5139/ IJASS.2016.17.3.423.

8. Shikhar Jaiswal A. - Shape parameterization of aerofoil shapes using Bezier curves, Lecture Notes in Mechanical Engineering, Part F9, 2017, pp. 79-85. doi: 10.1007/978-981-10-1771-1_13.

9. Salunke N. P., Ahamad J. R. A., and Channiwala S. A. - Aerofoil Parameterization Techniques: A Review, American Journal of Mechanical Engineering 2 (4) (2014). doi:10.12691/ajme-2-4-1.

10. Srinath R., Mukesh R., Poojari M. C., Hasan I., and Amare Alebachew W. - Streamline Effect Improvement of Additive Manufactured Aerofoil Utilizing Dynamic Stream Control Procedure, Advances in Materials Science and Engineering 2022 (2022). doi:10.1155/2022/1252681.

11. Kou J., et al. - Aeroacoustic aerofoil shape optimization enhanced by autoencoders, Expert Syst Appl. 217 (2023). doi: 10.1016/j.eswa.2023.119513.

12. Agarwal D. and Sahu P. - A Unified Approach for Aerofoil Parameterization Using Bezier Curves, Comput. Aided. Des. Appl. 19 (6) (2022). doi: 10.14733/cadaps.2022.1130-1142.

13. Gibert Martínez I., Afonso F., Rodrigues S., and Lau F. - A Sequential Approach for Aerodynamic Shape Optimization with Topology Optimization of Aerofoils, Mathematical and Computational Applications 26 (2) (2021). doi:10.3390/mca26020034.

14. Storti B., Garelli L., Storti M., and D’Elía J. - Optimization of an internal blade cooling passage configuration using a Chimera approach and parallel computing, Finite Elements in Analysis and Design 177 (2020). doi: 10.1016/j.finel.2020.103423.

15. Kumar D., Raisee M., and Lacor C. - Combination of polynomial chaos with adjoint formulations for optimization under uncertainties, In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design 140 (2019). doi:10.1007/978-3-319-77767-2_35.

16. Kleemann N., Karpuk S., and Elham A. - Conceptual design and optimization of a solar-electric blended wing body aircraft for general aviation, In: AIAA Scitech 2020 Forum, 2020. doi: 10.2514/6.2020-0008.

17. Dadone L. U. - US Army Helicopter Design DATCOM Volume I - Aerofoils, Datcom, Vol. I, September, 1976.

18. Gili P., Visone M., Lerro A., De Vivo F., and Scognamiglio G. - A new approach for the estimation of longitudinal damping derivatives: CFD validation on NACA 0012’, WSEAS Transactions on Fluid Mechanics, Vol. 10, 2015.

19. Israr H. A. and Dahalan Md. N. - Estimation of Lift and Drag Characteristics of UTM Elang-1 UAV, 2nd Regional Conference on Vehicle Engineering and Technology 2008, no. October, 2008.

20. Popović L., Paunović L., Đilas V., Milutinović A., Ivanov T., and Kostić I. - Design of the UAV aerodynamics in multiple stages, Scientific Technical Review 70 (2) (2020). doi:10.5937/str2002009p.

21. Chumbre V., Rushikesh T., Umatar S., and Kerur S. M. - CFD Analysis of Aerofoil Sections, International Research Journal of Engineering and Technology (IRJET) 5 (7) (2018).

22. El Maani R., Radi B., and El Hami A. - CFD Analysis of the Transonic Flow over a NACA 0012 Aerofoil, Incertitudes et fiabilité des systèmes multiphysiques 2 (2) (2018) doi: 10.21494/iste.op.2018.0307.

23. Comparative cfd analysis of aerofoils for unmanned aerial vehicles, Int. J. Res. Eng. Technol 6 (5) (2017). doi: 10.15623/ijret.2017.0605005.

24. Wei X., Wang X., and Chen S. - Research on parameterization and optimization procedure of low-Reynolds-number aerofoils based on genetic algorithm and Bezier curve, Advances in Engineering Software 149 (2020). doi: 10.1016/j.advengsoft.2020.102864.

25. Kumar D., Miranda J., Raisee M., and Lacor C. - Adjoint based multi-objective shape optimization of a transonic aerofoil under uncertainties, in 5th International Conference on Engineering Optimization, 2016.

26. Hoppe R. W. - Chapter 4 Sequential Quadratic Programming, in Book, Chapter, 2006.

27. Marques J. P. P. G., Cunha D. C., Harada L. M. F., Silva L. N., and Silva I. D. - A cost-effective trilateration-based radio localization algorithm using machine learning and sequential least-square programming optimization, Comput Commun 177 (2021) doi:10.1016/j.comcom.2021.06.005.

28. Nagawkar J., Ren J., Du X., Leifsson L., and Koziel S. - Single- and Multipoint Aerodynamic Shape Optimization Using Multifidelity Models and Manifold Mapping, J. Aircr 58 (3) (2021). doi: 10.2514/1.c035297.

29. Hasan I., Mukesh R., Radha Krishnan P., Srinath R., Babu D. P., and Lemma Gurmu N. Wind Tunnel Testing and Validation of Helicopter Rotor Blades Using Additive Manufacturing, Advances in Materials Science and Engineering 2022 (2022). doi:10.1155/2022/4052208.

30. United States Air Force - The USAF Stability And Control Digital Datcom Volume 1: Users Manual, Technical Report, Vol. I, no. Apr 1979, 1979.

31. Hasan I., Mukesh R., Radha Krishnan P., and Srinath R. - Aerodynamic performance analysis of a supercritical aerofoil in the helicopter main rotor, Transactions of the Canadian Society for Mechanical Engineering. 46 (2) (2022). doi:10.1139/tcsme-2021-0067.

32. Hasan I., Mukesh R., Radha Krishnan P., Srinath R., and Dhanya Prakash R. B. - Forward Flight Performance Analysis of Supercritical Aerofoil in Helicopter Main Rotor, Intelligent Automation and Soft Computing 33 (1) (2022). doi:10.32604/iasc.2022.023252.

33. Srinath R., R. Mukesh I. Hasan, and Krishnan P. R. - CFD Investigation of Dual Synthetic Jets on an Optimized Aerofoil's Trailing Edge, Journal of Applied Fluid Mechanics 17 (11) (2024). doi.org/10.47176/jafm.17.11.2709.

Downloads

Published

23-12-2024

How to Cite

[1]
Srinath R., M. R., Inamul Hasan, and R. K. P., “Aerofoil optimization using SLSQP and validation using numerical and analytical methods”, Vietnam J. Sci. Technol., vol. 62, no. 6, pp. 1210–1226, Dec. 2024.

Issue

Section

Mechanical Engineering - Mechatronics