Modeling Using Box Behnken Design for Optimization of Biodiesel Production from Low Grade Cooking Oil

Nursyamimi Zulkurnain, Aisyah Fathiah Ahmad, Salmiah Jamal Mat Rosid, Azman Azid, Susilawati Toemen
Author affiliations

Authors

  • Nursyamimi Zulkurnain Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
  • Aisyah Fathiah Ahmad Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
  • Salmiah Jamal Mat Rosid UniSZA Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0002-4482-0305
  • Azman Azid Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
  • Susilawati Toemen Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia

DOI:

https://doi.org/10.15625/2525-2518/19322

Keywords:

low-grade cooking oil, heterogeneous-base catalyst, transesterification, biodiesel, RSM

Abstract

The demand to an alternative for the depletion of diesel oil, has steered to the production of biodiesel as an alternative fuel. Nowadays, there is a growing need for biodiesel, which is typically produced using a base-catalyzed transesterification reaction. Therefore, this research utilizing a low-grade cooking oil as the biodiesel feedstock and Ca/Mg/Al2O3 as a heterogenous base catalyst using wetness impregnation method. The potential catalyst was optimized using response surface methodology (RSM) by varying parameters of calcination temperature, catalyst dosage and reaction time. The optimum parameter obtained from the RSM are 800°C calcination temperature, 6wt% catalyst dosage and 1 hour reaction time. The validation is carried out using optimum parameter and it gave 48.30% of biodiesel production.

Downloads

References

1. Samanta S. and Sahoo R. R. - Waste cooking (palm) oil as an economical source of biodiesel production for alternative green fuel and efficient lubricant, BioEnergy Research 14 (2021) 163-174. https://doi.org/10.1007/s12155-020-10162-3.

2. Bhatia S. K., Gurav R., Choi T. R., Kim H. J., Yang S. Y., Song H. S., and Yang Y. H. - Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresource tech. 302 (2020) 122872. https://doi.org/10.1016/ j.biortech.2020.122872

3. Baskar G. and Aiswarya R. - Trends in catalytic production of biodiesel from various feedstocks, Renew and sustain energy rev. 57 (2016) 496-504.

4. Nor Hadi N., Ismail S., and Ghafar F. - Cockles Shell as Heterogeneous Catalyst for Biodiesel production from Jatropha seed oil, J Intelek 9 (2) (2016) 21-25.

5. Maleki H., Kazemeini M., Larimi A. S., and Khorasheh F. - Transesterification of canola oil and methanol by lithium impregnated CaO–La2O3 mixed oxide for biodiesel synthesis, J. of ind and Eng. Chem. 47 (2017) 399-404. https://doi.org/10.1016/ j.jiec.2016.12.011.

6. Ibrahim N. A., Rashid U., Hazmi B., Moser B. R., Alharthi F. A., Rokhum S. L., and Ngamcharussrivichai C. - Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch. Fuel 317 (2022) 123525. https://doi.org/10.1016/j.fuel.2022.123525.

7. Salamatinia B., Hashemizadeh I., and Ahmad Z. A. - Alkaline earth metal oxide catalysts for biodiesel production from palm oil: Elucidation of process behaviors and modeling using response surface methodology, Iran. J. Chem. Chem. Eng. 32 (2013) 1. https://doi.org/10.30492/ijcce.2013.5911.

8. Xia S., Li J., Chen G., Tao J., Li, W., and Zhu G. - Magnetic reusable acid-base bifunctional Co doped Fe2O3–CaO nanocatalysts for biodiesel production from soybean oil and waste frying oil, Renew Energy 189 (2022) 421-434. https://doi.org/10.1016/ j.renene.2022.02.122.

9. Borah M. J., Das A., Das V., Bhuyan N., and Deka D. - Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst, Fuel 242 (2019) 345-354. https://doi.org/10.1016/j.fuel.2019.01.060.

10. Degfie T. A., Mamo T. T., and Mekonnen Y. S. - Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst, Scientific reports 9 (1) (2019) 18982. https://doi.org/10.1038/s41598-019-55403-4.

11. Kolakoti A., and Satish G. - Biodiesel production from low-grade oil using heterogeneous catalyst: an optimisation and ANN modelling, Aust. J. of Mech. Eng. 21 (1) (2023) 316-328. https://doi.org/10.1080/14484846.2020.1842298.

12. Soria-Figueroa E., Mena-Cervantes V. Y., García-Solares M., Hernández-Altamirano R., and Vazquez-Arenas J. - Statistical optimization of biodiesel production from waste cooking oil using CaO as catalyst in a Robinson-Mahoney type reactor, Fuel 282 (2020) 118853. https://doi.org/10.1016/j.fuel.2020.118853.

13. Zulkurnain N., Ahmad A. F., Rosid S. J. M., Azid A., Endut A., Toemen S., and Yusoff N. M. - Biodiesel production from low-grade cooking oil using calcium oxide-based catalyst: Preparation and characterization, In AIP Conference Proceedings 2454 (1) (2022) AIP Publishing.

14. Mat Rosid S. J., Wan Abu Bakar W. A., and Ali R. - Physicochemical study of supported cobalt–lanthanum oxide-based catalysts for CO2/H2 methanation reaction, Clean Tech and Env Policy 17 (2015) 257-264. https://doi.org/10.1007/s10098-014-0766-z.

15. Mokhtar W. N. A. W., Ramli M. R., Jamaluddin M. A., and Ramli S. - Rare earth metal doped CaO as catalyst for the transesterification reaction of cooking oil, Malay J. of Analytic Sci. 23 (4) (2019), 660-666. https://doi.org/10.17576/mjas-2019-2304-12.

16. Leung D. Y., Wu X., and Leung M. K. H. - A review on biodiesel production using catalyzed transesterification, Applied energy 87 (4) (2010) 1083-1095. https://doi.org/ 10.1016/j.apenergy.2009.10.006.

17. Lee S. L., Wong Y. C., Tan Y. P., and Yew S. Y. - Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst, Energy Conv and Manage 93 (2015) 282-288. https://doi.org/10.1016/j.enconman.2014.12.067.

18. Toemen S., Bakar W. A. W. A., and Ali R. - Investigation of Ru/Mn/Ce/Al2O3 catalyst for carbon dioxide methanation: Catalytic optimization, physicochemical studies and RSM, J. of the Taiwan Inst of Chem Eng. 45 (5) (2014) 2370-2378. https://doi.org/ 10.1016/j.jtice.2014.07.009.

Downloads

Published

23-12-2024

How to Cite

[1]
N. Zulkurnain, A. F. Ahmad, S. J. Mat Rosid, A. Azid, and S. Toemen, “Modeling Using Box Behnken Design for Optimization of Biodiesel Production from Low Grade Cooking Oil”, Vietnam J. Sci. Technol., vol. 62, no. 6, pp. 1098–1107, Dec. 2024.

Issue

Section

Natural Products