Size-dependent nonlinear bending of tapered cantilever microbeam based on modified couple stress theory

Author affiliations

Authors

  • Bui Thi Thu Hoai Faculty of Vehicle and Energy Engineering, Phenikaa University, Ha Dong, Ha Noi, Viet Nam
  • Le Cong Ich Faculty of Mechanical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem, Ha Noi, Viet Nam https://orcid.org/0000-0002-5367-0054
  • Nguyen Dinh Kien Institute of Mechanics https://orcid.org/0000-0001-9356-8401

DOI:

https://doi.org/10.15625/2525-2518/19281

Keywords:

Tapered microbeam, MCST, size-dependent nonlinear behavior, co-rotational approach, geometrical nonlinearity

Abstract

The Euler-Bernoulli beam theory is adopted in conjunction with modified couple stress theory (MCST) in this paper to formulate a beam element for size-dependent nonlinear bending analysis of a tapered cantilever microbeam subjected to end force/moment. The microbeam is considered to be linearly tapered in both the width and height directions. The element is derived in the context of the co-rotational approach in which the internal force vector and the tangent stiffness matrix are firstly derived in an element attached coordinate system and then transferred to the global one by the transformation matrices. An incremental/iterative procedure is adopted in conjunction with the arc-length method to compute the response of the microbeam. The obtained results show that the formulated element is efficient, and it is capable to model accurately the size-dependent nonlinear response of the microbeam by using just several elements. It is shown that the size effect plays an important role on the large deflection response, and the displacements of the microcantilever are overestimated by ignoring the influence of the micro-scale size effect. The effects of the material length scale parameter and the tapered ratio on the nonlinear behavior of the microbeam are studied in detail and highlighted.

Downloads

Download data is not yet available.

References

1. Faris W., Nayfeh A. H. - Mechanical response of a capacitive microsensor under thermal

load, Communications in Nonlinear Science and Numerical Simulation 12 (5) (2007) 776-

783. https://doi.org/10.1016/j.cnsns.2005.06.006.

2. Thai H. T., Vo T. P., Nguyen T. K., Kim S. E. - A review of continuum mechanics models for size-dependent analysis of beams and plates, Composite Structures 177 (2017) 196-219. https://doi.org/10.1016/j.compstruct.2017.06.040.

3. Collenz A., De Bona F., Gugliotta A. Somà A. - Large deflections of microbeams under electrostatic loads, Journal of Micromechanics and Microengineering 14 (3) (2003) 365. https://DOI 10.1088/0960-1317/14/3/008.

4. Abdel-Rahman E. M., Younis M. I., Nayfeh A. H. - Characterization of the mechanical behavior of an electrically actuated microbeam, Journal of Micromechanics and Microengineering 12 (6) (2002) 759-766. https://doi.org/10.1088/0960-1317/12/6/306.

5. Abdel-Rahman E. M., Nayfeh A. H. - Secondary resonances of electrically actuated resonant microsensors, Journal of Micromechanics and Microengineering 13 (3) (2003) 491-501. https://doi.org/10.1088/0960-1317/13/3/320.

6. Younis M. I. - Multi-mode excitation of a clamped–clamped microbeam resonator, Nonlinear Dynamics 80 (3) (2015) 1531-1541. https://doi.org/10.1007/s11071-015-1960-1.

7. Lam D. C. C., Yang F., Chong A. C. M., Wang J., Tong P. - Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51(8) (2003) 1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X.

8. Zhao J., Zhou S., Wang B., Wang X. - Nonlinear microbeam model based on strain gradient theory, Applied Mathematical Modelling 36 (6) (2012) 2674-2686. https://doi.org/10.1016/j.apm.2011.09.051

9. Yang F. A. C. M., Chong A. C. M., Lam D. C. C., Tong P. - Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures 39 (10) (2002) 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.

10. Mohammadi H., Mahzoon M. - Thermal effects on postbuckling of nonlinear microbeams

based on the modified strain gradient theory, Composite Structures 106 (2013) 764-776.

https://doi.org/10.1016/j.compstruct.2013.06.030.

11. W. Xia, L. Wang, and L. Yin - Nonlinear non-classical microscale beams: static bending,

postbuckling and free vibration, International Journal of Engineering Science 48 (12) (2010) 2044-2053. https://doi.org/10.1016/j.ijengsci.2010.04.010.

12. Timoshenko S. P., Gere J. M. - Theory of elastic stability, New York: McGraw-Hill, 1961. https://doi.org/10.1017/S0368393100104389

13. Wood R. D., Zienkiewicz O. C. - Geometrically nonlinear finite element analysis of

beams, frames, arches and axisymmetric shells, Comput Struct 7 (6) (1977) 725-735. https://doi.org/10.1016/0045-7949(77)90027-X

14. Cleghorn W. L., Tabarrok B. - Finite element formulation of a tapered Timoshenko beams for free lateral vibration analysis, J Sound Vib. 152 (3) (1992) 461-470. https://doi.org/ 10.1016/0022-460X(92)90481-C

15. Baker G. - On the large deflections of non-prismatic cantilevers with a finite depth, Comput Struct. 46 (2) (1993) 365-370. https://doi.org/10.1016/0045-7949(93)90201-N

16. Baker G. - Exact deflections in non-prismatic beam members, Comput Struct. 61 (3) (1996) 515-528. https://doi.org/10.1016/0045-7949(96)00046-6

17. Lee B. K., Wilson J. F., Oh S. J. - Elastica of cantilevered beams with variable cross section, Int. J. Non-Linear Mech. 28 (5) (1993) 579-589. https://doi.org/10.1016/0020-7462(93)90049-Q

18. Brojan M., Videnic T., Kosel F. - Large deflections of nonlinearly elastic nonprismatic cantilever beams made from materials obeying the generalized Ludwick law, Meccanica 44 (6) (2009) 733-739. https://doi.org/10.1007/s11012-009-9209-z

19. Attarnejad R., Semnani S. J., Shahba A. - Basic displacement functions for free vibration analysis of non- prismatic Timoshenko beams, Finite Elem. Anal. Des. 46(10) (2010) 916–929. https://doi.org/10.1016/j.finel.2010.06.005

20. Crisfield M. A. - Nonlinear finite element analysis of solids and structures. Volume 1: Essentials, Wiley, New York, 1991. https://www.osti.gov/biblio/226942

21. Nguyen D. K. - Large displacement response of tapered cantilever beams made of axially functionally graded material, Composites Part B: Engineering 55 (2013) 298-305. https://doi.org/10.1016/j.compositesb.2013.06.024

22. Crisfield M. A. - A fast incremental/iterative solution procedure that handles “snapthrough”, Computers & Structures 13 (1981) 55-62. https://doi.org/10.1016/00457949(81)90108-5

23. Trinh L. C., Nguyen H. X., Vo T. P., Nguyen T. K. - Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory, Composite Structures 154 (2016) 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033

Downloads

Published

23-12-2024

How to Cite

[1]
Bui Thi Thu Hoai, L. C. Ich, and N. D. Kien, “Size-dependent nonlinear bending of tapered cantilever microbeam based on modified couple stress theory”, Vietnam J. Sci. Technol., vol. 62, no. 6, pp. 1196–1209, Dec. 2024.

Issue

Section

Mechanical Engineering - Mechatronics