Nanocellulose as promising reinforcement materials for biopolymer nanocomposites: a review
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18831Keywords:
nanocellulose, polymer nanocomposite, , surface modification, , mechanical properties, , thermal propertiesAbstract
Abstract. A green and sustainable development in world is important and it needs to further strengthen at the moment. In this aspect, biopolymers, biopolymers nanocomposites with biodegradable properties are the best way for this purpose. Nanocellulose (NC) is a biopolymer and can be produced from natural resources like various plant species and agricultural waste products including rice husk, tea leaves, sugarcane bagasse and so forth. Due to their special properties such as biodegradability, renewability, biocompability, low cost and outstanding mechanical capabilities, NC have gained increased research and application interests. This review provided detail information about the production, structure and properties of NC. The usage of NC as reinforcement materials for different types of biopolymers are presented in the review. The surface modification of NC for better dispersion and better interaction of NCs in polymer matrices, the mechanical and thermal properties of the NC biopolymers nanocomposites are discussed.
Downloads
References
Sharma A., Thakur M., Bhattacharya M., Mandal T., and Goswami S. - Commercial application of cellulose nano-composites – A review- Biotechnol. Reports 21 (2018). e00316.
Hussin F. N. N. M., Wahab R. A., and Attan N. - Nanocellulose and nanoclay as reinforcement materials in polymer composites: A review, Malaysian J. Fundam. Appl. Sci. 16 (2)(2020) 145–153.
Alagarsamy M., Barkunan S. R., Jayapal N., Murugan A., Muralikrishnan P., and Ramulu P. J. - Reinforcement of Nanocellulose as Green Agent in the Electronic Applications Associated with the Composites of Polymer Matrix, Int. J. Polym. Sci., Article ID 9645190 (2023) 1-9.
Kargarzadeh H. Mariano M., Jin H., Ning L., Ahmad I., Dufresne A., Thomas S. - Recent developments on nanocellulose reinforced polymer nanocomposites: A review, Polymer (Guildf) 132 (2017) 368-393.
Kargarzadeh H., Huang J., Lin N., Ahmad L., Mariano M., Dufresne A., Thomas S., Galeski A. - Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites, Prog. Polym. Sci. 87 (2018) 197-227.
Bangar S. P. and Whiteside W. S. - Nano-cellulose reinforced starch bio composite films- A review on green composites, Int. J. Biol. Macromol. 185 (2021) 849-860.
Shojaeiarani J., Bajwa D. S., and Chanda S. - Cellulose nanocrystal based composites: A review, Compos. Part C Open Access 5 (2020) 100164.
Thakur V., Guleria A., Kumar S., Sharma S., and Singh K. - Recent advances in nanocellulose processing, functionalization and applications: A review, Mater. Adv. 2 (6) (2021)1872-1895.
Djalal T., Ahmed F. T., Mehdi D., Tuan S. H., Nanang M., Nicolas B., and Hussin M. H. - Nanocellulose: from fundamental to advanced application, Frontier in Chemistry 8 (2020) 392.
Börjesson M. and Westman G. - Crystalline Nanocellulose - Preparation, Modification, and Properties, Cellul. Fundam. Asp. Curr. Trends, INTECH publisher (2015).
Roy D., Semsarilar M., Guthrie J.T., Perrier S.- Cellulose Modification by polymer grafting: A review, Chemical Society Reviews 38 (2009) 2046-2064.
Chanda S. and Bajwa D. S. - A review of current physical techniques for dispersion of cellulose nanomaterials in polymer matrices, Rev. Adv. Mater. Sci. (60) (1) (2021) 325-341.
Eichhorn S. J. and Davies G. R. - Modelling the crystalline deformation of native and regenerated cellulose, Cellulose 13 (3) (2006) 291-307.
Kim N., Theodora R., Mikhail I., Adriaan V. H., Yulin D., Jo A. S., and Arie M. - Chapter 9: American Production process: Low Cost Nanocellulose for Renewable Advanced Materials Application, American Process Inc. Springer International Publish, Switzerland, 2016.
Henriksson M., Berglund L. A., Isaksson P., Lindström T., and Nishino T. - Cellulose nanopaper structures of high toughness, Biomacromolecules 9 (6) (2008) 1579-1585.
Gindl W., Keckes J. - All cellulose nanocomposites, Polymer 46 (33) (2005) 10221-10225.
Malucelli L. C., Lacerda L. G., Dziedzic M., Aure´lio da Silva Carvalho Filho M - Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research, Rev. Environ. Sci. Biotechnol. 16 (2017) 131-145.
Abdel-Hakim A., Rev R. M. R. C.- Nanocellulose and its polymer composites: preparation, characterization, and applications, Russ. Chem. Rev. 92 (4) (2023) RCR5076.
Jonoobi M., Harun J., Shakeri A., Misra M., and Oksmand K. - Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers, BioResources 4 (2)(2009) 626-639.
Jiang F. and Y. Hsieh Lo - Cellulose nanocrystal isolation from tomato peels and assembled nanofibers, Carbohydr. Polym. 122 (2015) 60-68.
Silvério H. A., Flauzino Neto W. P., Dantas N. O., and Pasquini D.- Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites, Ind. Crops Prod. 44 (2013) 427-436.
Deepa B., Abraham E. Cherian B. M., Bismack A., Blacker J. J., Porthan L. A., Leao A. L., Souza S. F., Kottaisamy M. - Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion, Bioresour Technol. 102 (2) (2011) 1988-1997.
Abraham E., Deepa B., Pothan L. A. Jacob M., Thomas S., Cvelbar U., Anandjiwawala R. - Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach, Carbohydr. Polym. 86 (4) (2011) 1468-1475.
Chen W. Yu H., Liu Y., Chen P., Hai Y. - Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments, Carbohydr. Polym. 83 (4) (2011)1804-1811.
Beck-Candanedo S., Roman M., and Gray D. G. - Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions, Biomacromolecules 6 (2) (2005) 1048-1054.
Dufresne A. -Comparing the mechanical properties of high performances polymer nanocomposites from biological sources, J. Nanosci. Nanotechnol. 6 (2) (2006) 322-330.
Strømme M., Mihranyan A., and Ek R. - What to do with all these algae, Mater. Lett. 57 (3) (2002) 569-572.
Roman. M and Winter. W. T. - Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose, Biomacromolecules 5 (2004) 1671-1677.
Grunert M. and Winter W. T. - Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals 10 (2002) 27-30.
Hop T. T. T., Son P. T., Mai Tung N. T. - Study on preparation of cellulose nanocrystal from agricultural waste sugarcane bagasse, Vietnam Journal of Chemistry 57 (6E1.2) (2019) 261-265.
Habibi Y., Goffin A.L., Schilitz N., Dusquesne E., Dubois P., Dufresne A. - Biocomposites based on poly(ɛ-caprolactone)-grafted cellulose nanocrystals by ring opening polymerization, J. Mater. Chem. 18 (2008) 5002-5010.
Cranston E. D. and Gray D. G. - Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose, Biomacromolecules 7 (9) (2006) 2522-2530.
Hamad W. Y. and Hu T. Q. - Structure-process-yield interrelations in nanocrystalline cellulose extraction, Can. J. Chem. Eng. 88 (3) (2010) 392-402.
Nang An V., Chi Nhan H. T., Tap T. D., Van T. T. T., Van Viet P., and Van Hieu L. - Extraction of High Crystalline Nanocellulose from Biorenewable Sources of Vietnamese Agricultural Wastes, J. Polym. Environ. 28 (5) (2020) 1465-1474.
Dong X. M., Revol J. F., Gray D. G., Gray D. G. - Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose, Cellulose 5 (1) (1998) 19-32.
Araki J., Wada M., Kuga S., Okano T. - Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids Surfaces A Physicochem. Eng. Asp. 142 (1) (1998) 75-82.
Araki J., Wada M., Kuga S., Okano T. - Influence of surface charge on viscosity behavior of cellulose microcrystal suspension, J. Wood Sci. 45 (1999) 258-261.
Lee S. Y., Mohan D. J., Kang I. A., Doh G. H., Lee S., Han S. O. - Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading, Fibers Polym. 10 (2009) 77-81.
Eichhorn S. J., Dufresne A. - Review: Current international research into cellulose nanofibres and nanocomposites 45 (2010) 1-33.
Tarchoun A. F., Trache D., Klapotke T. M., Derradji M., Bessa W. - Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media, Cellulose 26 (2019) 7635-7631.
Dien L. Q., Cuong T. D., Minh Phuong N. T., Hoang P. H., Truyen D. N., and Minh Nguyet N. T. - Nanocellulose fabrication from Oryza sativa L. rice straw using combined treatment by hydrogen peroxide and dilute sulfuric acid solution, Energy Sources, Part A Recover. Util. Environ. Eff., (2019) 1-10.
Dien L. Q. and Anh T. K. - Nanocellulose preparation from cassava bagasse via hydrolysis by sulfuric acid and hydrogen peroxide medium, Nihon Enerugi Gakkaishi/Journal Japan Inst. Energy 100 (8) (2021) 135-143.
Khali H. A., Davoudpour Y., Islam M. N., Mustapha A., Sudesh K., Dungani R., Jawaid M. - Production and modification of nanofibrillated cellulose using various mechanical processes: A review, Carbohydr. Polym. 99 (2014) 649-665.
Khali H. A., Davoudpour Y., Aprilia N. S., Mustapha A., Hossain S., Islam N., Dungani R. - Chapter 11, Nanocellulose polymer nanocomposites: Fundamental and Application, Wiley publisher, 2014.
Spence K., Habibi Y., Dufresne A. - Cellulose fiber Bio-and Nanopolymer composites, Springer publischer, 2011, pp. 179-213.
Tran Thi Thanh Hop, Dang Thi Mai, Trinh Duc Cong - A comprehensive study on preparation of nanocellulose from bleached wood pulps by TEMPO-mediated oxidation, Results Chem. 4 (2022) 100540.
Isogai A., Saito T., and Fukuzumi H. - TEMPO-oxidized cellulose nanofiber, Nanoscale 3 (2011) 71-85.
Serge R., Fernand P. - State of the art manufacturing and engineering of nanocellulose: A review of availble data and industrial application, Journal of Biomaterials and Nanobiotechnology 4 (2013) 165-188
El-Saied H., Basta A. H., and Gorban R. H. - Research progress in friendly environmental technology for the production of cellulose products (bacterial celllulose and its application), Polym. Plast. Technol. Eng. 43 (2004) 797-820.
Ming-Ju Chen J. Y., Kreuter T. K. - Influence of Cultivation Conditions on Mechanical and Morphological Properties of Bacterial Cellulose Tubes, J. Anat. 189 (1996) 425-434.
Zhang F., Ren H., Tong G., and Deng Y. - Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties, Cellulose 23 (2016) 3665-3676.
Zhang F., Wu W., Zhang X., Meng X., Tong G., and Deng Y. - Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release, Cellulose 23 (1) (2016) 415-425.
Fujisawa S., Takasaki Y., and Saito T. - Structure of Polymer-Grafted Nanocellulose in the Colloidal Dispersion System, Nano Lett. 23 (3) (2023) 880-886.
Robles E., Csóka L., and Labidi J. - Effect of reaction conditions on the surface modification of cellulose nanofibrils with aminopropyl triethoxysilane, Coatings 8 (2018) 1-14.
Paunikallio T., Suvanto M., and Pakkanen T. T. - Viscose fiber/polyamide 12 composites: Novel gas-phase method for the modification of cellulose fibers with an aminosilane coupling agent, J. Appl. Polym. Sci. 102 (5) (2006) 4478-4483.
Tavakolian M., Jafari S. M., and T. G. M. van de Ven - A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials, Nano-Micro Lett. 12 (2020).
Barry Arkles - Silane Coupling Agents: Connecting Across Boundaries, Gelest, 2006, pp. 1-9
Brochier Salon M. C., Abdelmouleh M., Boufi S., Belgacem M. N., and Gandini A. - Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions, J. Colloid Interface Sci. 289 (2005) 249-261.
Nhi T. T. Y., Cong T. D., Hop T. T. T., Hai L. N., Huu N. T., and Tung N. T. - Surface Modification of Cellulose Microfibrils with Silane Agent for Eco-Friendly Hydrophobic Coatings, Russ. J. Appl. Chem. 95 (2022) 379-386.
Wang Y., Wang X., Xie Y., and Zhang K. - Functional nanomaterials through esterification of cellulose: a review of chemistry and application, Cellulose 25 (2018) 3703-3731.
Siqueira G., Bras J., and Dufresne A. - New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate, Langmuir 26 (2010) 402-411.
Carolina J. B., Morelli L., Mohamed N. Belgacem, Márcia, Branciforti C., Rosario E. S. Bretas, Alexandre Crisci - Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals, Compos. Part A 83 (2016) 80-88.
Sapuan S. M., Harussani M. M., Ismail A. H., Zularifin Soh N. S., Mohamad Azwardi M. I., and Siddiqui V. U. - Development of nanocellulose fiber reinforced starch biopolymer composites: A review, Phys. Sci. Rev. (2023).
Ilyas R. A., Sapuan S. M. - Nanocellulose/Starch Biopolymer Nanocomposites: Processing, Manufacturing, and Applications. Elsevier Inc., 2020, pp. 65-88.
Aigaje E., Riofrio A.- Processing, Properties, Modifications, and Environmental Impact of Nanocellulose/Biopolymer Composites: A Review, Polymer 15 (2023) 1-36.
Dhali K., Ghasemlou M., Daver F., Cass P., and Adhikari B. - A review of nanocellulose as a new material towards environmental sustainability, Sci. Total Environ. 775 (2021) 145871.
Savadekar N. R. and Mhaske S. T. - Synthesis of nano cellulose fibers and effect on thermoplastics starch based films, Carbohydr. Polym. 89 (2012) 146 -151.
Agustin M. B., Ahmmad B., Alonzo S. M. M., and Patriana F. M. - Bioplastic based on starch and cellulose nanocrystals from rice straw, J. Reinf. Plast. Compos. 33 (2014) 2205-2213.
Fan H., Ji N., Zhao M., Xiong L., and Sun Q. - Characterization of starch films impregnated with starch nanoparticles prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, Food Chem. 192 (2016) 865-872.
Bruni G. P., Oliveira J. P. de, Fonseca L. M., da Silva F. T., Dias A. R. G., and Rosa Zavareze E. - Biocomposite Films Based on Phosphorylated Wheat Starch and Cellulose Nanocrystals from Rice, Oat, and Eucalyptus Husks, Starch/Staerke 72 (2020) 1-8.
Noor Azammi A.M., Ilyas R.A., Sapuan S.M., Rushdan Ibrahimd, Atiqah A.- Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface, Interfaces in Particle and Fibre Reinforced Composites, 2019, pp. 29-93.
Azeredo H. M. C., Mattoso L. H. C., Wood D., Williams T. G., Avena-Bustillos R. J., and McHugh T. H. - Nanocomposite edible films from mango puree reinforced with cellulose nanofibers, J. Food Sci. 74 (2009) 31-35.
MBabaee M., Jonoobi M., Hamzeh Y., and Ashori A. - Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers, Carbohydr. Polym. 132 (2015) 1-8.
Lu Y., Weng L., and Cao X. - Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter, Macromol. Biosci. 5 (2005) 1101-1107.
Chen Y., Liu C., Chang P. R., Cao X., Anderson D. P. - Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time, Carbohydr. Polym. 76 (2009) 607-615.
Montero B., Rico M., Rodríguez-Llamazares S., Barral L., and Bouza R. - Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume, Carbohydr. Polym. 157 (2017) 1094-1104.
Wang Q., Ji C., Sun J., Zhu Q., and Liu J. - Structure and properties of polylactic acid biocomposite films reinforced with cellulose nanofibrils, Molecules 25 (2020) 3306.
Nair S. S., Chen H., Peng Y., Huang Y., and Yan N. - Polylactic Acid Biocomposites Reinforced with Nanocellulose Fibrils with High Lignin Content for Improved Mechanical, Thermal, and Barrier Properties, ACS Sustain. Chem. Eng. 6 (2018) 10058-10068.
Kian L. K., Saba N., Jawaid M., and M. Sultan T. H.- A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites, Int. J. Biol. Macromol. 121 (2019)1314-1328.
Lin N., Huang J., Chang P. R., Feng J., and Yu J.- Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid), Carbohydr. Polym. 83 (2011) 1834-1842.
Pei A., Zhou Q., and Berglund L. A -Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) - Crystallization and mechanical property effects Compos. Sci. Technol. 70 (2010) 815-821.
Tingaut P., Zimmermann T., and Lopez-Suevos F. - Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose, Biomacromolecules 11 (2010) 454-464.
Mourya V. K., Inamdar N. N. - Chitosan-modifications and applications: Opportunities galore, React. Funct. Polym. 68 (2008) 1013-1051.
Dodane V. and Vilivalam V. D. - Pharmaceutical applications of chitosan, Pharm. Sci. Technol. Today 1 (6) 246-253.
Do T. V. V., N. B. A. Tran, and Nguyen-Thai N. U. - Preparation of spherical nanocellulose from Gai bamboo and mechanical properties of chitosan/nanocellulose composite, Polymer Composites 44 (4) (2023) 2287-2295.
Khan A., Ruhul A Khan, Stephane Salmieri, Canh Le Tien - Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films, Carbohydr. Polym. 90 (2012) 1601-1608.
Strnad S., Zemljiˇc L. F - Cellulose – Chitosan Functional Biocomposites, Polymers 15 (2023) 425.
Fernandes S. C. M., Carmen S. R. Freire - Transparent chitosan films reinforced with a high content of nanofibrillated cellulose, Carbohydr. Polym. 81 (2010) 394-401.
Talebi H., Ghasemi F. A., and Ashori A. - The effect of nanocellulose on mechanical and physical properties of chitosan-based biocomposites, J. Elastomers Plast. 54 (2022) 22-41.
Hasegawa M., Isogai A., Onabe F., Usuda M., and Atalla R. H. - Characterization of cellulose–chitosan blend films, J. Appl. Polym. Sci. 45 (1992) 1873-1879.
Rubentheren V., Ward T. A., Chee C. Y., Nair P., Salami E., and Fearday C. - Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid, Carbohydr. Polym. 140 (2016) 202-208.
Khan A., Salmieri S., Fraschini C., Bouchard J., Riedl B., and Lacroix M. - Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent, ACS Appl. Mater. Interfaces 6 (2014) 15232-15242.
Soni B., Hassan E. B., Schilling M. W., and Mahmoud B. - Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties, Carbohydr. Polym. 151 (2016) 779-789.
Kim U. J., Wada M., and Kuga S. - Solubilization of dialdehyde cellulose by hot water, Carbohydr. Polym. 56 (2004) 7-10.
Elangwe C. N., Morozkina S. N., Olekhnovich R. O., Krasichkov A., Polyakova V. O., and Uspenskaya M. V. - A Review on Chitosan and Cellulose Hydrogels for Wound Dressings, Polymers (Basel) 14 (2022) 5163.
Tang R., Yu Z., Renneckar S., and Zhang Y. - Coupling chitosan and TEMPO-oxidized nanofibrilliated cellulose by electrostatic attraction and chemical reaction, Carbohydr. Polym. 202 (2018) 84-90.
Hasnain M. S., Jameel E., Mohanta B., Dhara A. K., Alkahtani S., Nayak A. K. - Chapter 1- Alginates: Sources, structure, and properties. Academic Press, 2020, pp. 1-17.
Tanzina Huq, Stephane S., Khan A. -Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film, Carbohydr. Polym. 90 (2012) 1757-1763.
Evelyna A., Astifanni T. K., Ruth I., Asri L., Purwasasmita B. S. - Preparation of Nanocellulose-Alginate Nanocomposites for Chlorhexidine Digluconate Drug Carrier, IOP Conf. Ser. Mater. Sci. Eng. 547 (2019) 012046
Park M., Lee D., Hyun J. - Nanocellulose-alginate hydrogel for cell encapsulation, Carbohydr. Polym. 116 (2015) 223-228.
Butler M. M. and Mcgrath K. P. - Protein-Based Materials. Biopolymers from Renewable Resources. Macromolecular Systems - Materials Approach. Springer, Berlin, Heidelberg, 1998.
Boy R., Narayanan G., Kotek R. - Formation of Cellulose and Protein Blend Biofibers. Polysaccharide-based Fibers and Composites. Springer, Cham., 2018.
Wang Y., Cao X., and Zhang L. - Effects of cellulose whiskers on properties of soy protein thermoplastics, Macromol. Biosci. 6 (2006) 524-531.
Quero F., Quintro. A - Production of Biocompatible Protein Functionalized Cellulose Membranes by a Top-Down Approach, ACS Biomater. Sci. Eng. 5 (2019) 5968-5978.
Joshi N., Rawat K., Bohidar H. B. - pH and ionic strength induced complex coacervation of Pectin and Gelatin A, Food Hydrocoll. 74 (2018) 132-138.
Duconseille A., Astruc T., Quintana N., Meersman F., Sante-Lhoutellier V. - Gelatin structure and composition linked to hard capsule dissolution: A review, Food Hydrocoll. 43 (2015) 360-376.
Leite L. S. F., Moreira F. K. V., Mattoso L. H. C., Bras J. - Electrostatic interactions regulate the physical properties of gelatin-cellulose nanocrystals nanocomposite films intended for biodegradable packaging, Food Hydrocoll. 113 (2021) 106424.
George J., Siddaramaiah - High performance edible nanocomposite films containing bacterial cellulose nanocrystals, Carbohydr. Polym. 87 (2012) 2031-2037.
Treesuppharat W., Rojanapanthu P., Siangsanoh C., Manuspiya H., and Ummartyotin S.- Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems, Biotechnol. Reports 15 (2017) 84-91.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.