Synthesis and characterization of microcrystalline and nanocrystalline cellulose from cotton linter for composite applications

Sohana Pervin, S. M. Abdur Razzaque Razzaque, G. M. Arifuzzaman Khan Khan, Shamsul Alam, Moshiur Rahman
Author affiliations

Authors

  • Sohana Pervin Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering Islamic University, Kushtia-7003, Bangladesh
  • S. M. Abdur Razzaque Razzaque Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering Islamic University, Kushtia-7003, Bangladesh
  • G. M. Arifuzzaman Khan Khan Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering Islamic University, Kushtia-7003, Bangladesh https://orcid.org/0000-0002-4233-9868
  • Shamsul Alam Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering Islamic University, Kushtia-7003, Bangladesh
  • Moshiur Rahman Polymer Research Laboratory, Department of Applied Chemistry and Chemical Engineering Islamic University, Kushtia-7003, Bangladesh https://orcid.org/0009-0006-2899-6905

DOI:

https://doi.org/10.15625/2525-2518/18536

Keywords:

cotton linter, acid hydrolysis, microcrystalline cellulose, nanocellulose, bulk density, crystallinity

Abstract

In this work, microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) was synthesized from cotton linter collected from a textile mill in Bangladesh. The synthesis was carried out through several steps; alkali treatment, NaClO2 bleaching and acid hydrolysis. The acid hydrolysis was conducted with 9N and 12N sulphuric acid (H2SO4) for synthesis of MCC and NCC, respectively. The raw and synthesized samples were characterized by measuring bulk density, FTIR, SEM and WAXD techniques. The bulk density of MCC and NCC is higher than that of the raw sample, due to shorter chain length, diameter and reduction of amorphous region of cellulose chain. The oxidation reaction took place during the MCC and NCC preparation was detected by FTIR spectra. From the SEM images, it is seen that the surface of untreated sample looks relatively smooth as compared to the rough surface of treated samples due to voids formation and absence of wax on the surface. The crystallinity index of MCC and NCC was measured from the peaks at 14.6° and 22.6° (2  angles) of WAXD curves. It shows the enrichment in the proportion of crystalline cellulose in MCC. The thermal stability of the MCC is better than that of other experimented samples. Finally, the synthesized MCC and NCC may be emerging and promising materials with exceptional properties.

Downloads

Download data is not yet available.

References

1. Gray D. G. – Recent advances in chiral nematics structure and iridescent color of cellulose nanocrystals films. Nanomater. 6 (2016) 213-221. Doi: 10.3390/nano6110213

2. Khalil H. P. S. A., Aprilia N. A. S., Bhat A. H., Jawaid M., Paridah M. T., Rudi D. – A Jatropha biomass as renewable materials for biocomposites and its applications. Ren. & Sust. Ene. Rev. 22 (2013) 667-685. Doi:10.1016/j.rser.2012.12.036

3. Poletto M., Pistor V., Zattera A. J. – Structural Characteristics and Thermal Properties of Native Cellulose. Cellul. Fundam. Asp. (2013) 45-68. Doi.org/10.5772/50452

4. Wegner T. H., Jones P. E. – Advancing cellulose-based nanotechnology. Cellu. 13 (2006) 115-118. Doi:10.1007/s10570-006-9056-1

5. de Morais T. E., Corrêa A. C., Manzoli A., de Lima L. F, Ribeiro de Oliveira C., Capparelli Mattoso L. H. – Cellulose nanofibers from white and naturally colored cotton fibers. Cellu. 17 (2010) 595-606. Doi:10.1007/s10570-010-9403-0

6. Sczostak A. – Cotton linters: An alternative cellulosic raw material. Macromol. Sympo. 280 (2009) 45-53. doi.org/10.1002/masy.200950606

7. Rahman M., Arifuzzaman Khan G. M., Abdur Razzaque S. M., Ahsanul Haque M., Gafur M. A., Shamsul Alam M. – Fabrication and mechanical/thermal properties of composites from cotton linter and urea formaldehyde resin. Indian Jour. Of Fib. & Tex. Res. 47 (2022) 326-333. Doi:10.56042/ijftr.v47i3.51398

8. Ding C., Zhu X., Ma X., Yang H. – Synthesis and Performance of a Novel Cotton Linter Based Cellulose Derivatives Dispersant for Coal-Water Slurries. Poly. 14 (2022) 1103. doi.org/10.3390/polym14061103

9. Wang Q., Zhu J. Y., Considine J. M. – Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5 (2013) 2527-2534. Doi:10.1021/am302967m

10. • Choi Y. J., Simonsen J. - Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. Jour. of Nano. & Nanotech. 6 (3) (2006) 633-639. Doi:10.1166/ jnn.2006.132

11. • Mandal A., Chakrabarty D. - Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohy. Poly. 86 (2011) 1291-1299. DOI:10.1016/j.carbpol.2011.06.030

12. • Abraham E., Deepa B., Pothan L. A., Jacob M., Thomas S., Cvelbar U,. Anandjiwala R. - Extraction of nanocellulose fibrils from lignocellulosic fibres a novel approach. Carbohy. Poly. 86 (2011) 1468-1475. Doi:10.1016/j.carbpol.2011.06.034

13. • Zhao H. P., Feng X. Q., Gao, H. - Ultrasonic technique for extracting nanofibers from nature materials. Appl. Phys. Lett. 90 (2007) 073112. Doi:10.1063/1.2450666

14. • Paakko M., Ankerfors M., Kosonen H., Nykanen A., Ahola, S., Osterberg M. - Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromoi. 8 (2007) 1934-1941. Doi:10.1021/bm061215p

15. • Cheng Q., Wang S., Rials T. – Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites part A: App. Sci. and Manufac. 40 (2009) 218-224. Doi:10.1016/j.compositesa.2008.11.009

16. Capadona J. R., Shanmuganathan K., Trittschuh S., Seidel S., Rowan S. J., Weder C. - Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromol. 10 (2009) 712–716. Doi: 10.1021/bm8010903.

17. Eichhorn S. J., Dufresne A., Aranguren M., Marcovich N. E., Capadona J. R., Rowan S. J et al. - Review: Current international research into cellulose nanofibres and nanocomposites. J. of Mat. Sci. 45 (2010) 1–33. https://doi.org/10.1007/s10853-009-3874-0

18. • Stelte W., Sanadi A. - Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Indus. & Eng. Chem. Res. 48 (2009) 11211–11219. Doi: 10.1021/ie9011672

19. • Teixeira E., Corrêa A. C., Manzoli A., Leite F. L., Oliveira C. R., Mattoso L. H. C. - Cellulose nanofibers from white and naturally colored cotton fibers. Cellu. 17 (2010) 595–606. Doi: 10.1007/s10570-010-9403-0

20. • Oksman K., Mathew A. P., Bondeson D., Kvien I. - Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 66 (2006) 2776. Doi:10.1016/j.compscitech.2006.03.002

21. Qua E. H, Hornsby P. R, Sharma H. S. S, Lyons G., McCall R. D. - Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibers. Jou. Appl. Polym. Sci. 113 (2009) 2238. https://doi.org/10.1002/app.30116

22. Ge H., Zhang L., Xu M., Cao J., Kang C. - Preparation of di-aldehyde cellulose and its antibacterial activity, in advances in applied aiotechnology, ICAB 2016. Lecture Notes in Electrical Engineering, edited by H Liu, C Song and A Ram. Vol. 444 (Springer, Singapore) 2016.

23. Janovsky A. C., McCredia E. J., Janet E. - Chemical Abstract 123 (2005) 114360 z.

24. Ono S., Keiko K. - Kokai Tokkya Koho. JP Patent 07 143 856 (1995).

25. • Wei L., Xin Z., Shouxin L. - Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix. Carbohy. Poly. 94 (2013) 278-285. Doi:10.1016/j.carbpol.2013.01.052

26. Eichhorn S. J., Dufresne A., Aranguren M., Marcovich N. E., Capadona J. R., Rowan S. J. et al. - Review: current international research into cellulose nanofibres and nanocomposites. Jour. Mater. Sci. 45 (2010) 1-33. Doi:10.1007/s10853-009-3874-0

27. Bharimalla A. K., Deshmukh S. P., Patil S., Nadanathangam V., Saxena S. - Development of energy efficient nanocellulose production process by enzymatic pretreatment and controlled temperature refining of cotton linters. Cellu. 30 (2022) 833-847. Doi:10.1007/s10570-022-04959-y

28. Abraham E., Deepa B., Pothan L. A., Jacob M., Thomas S., Cvelbar U., Anandjiwala R. - Extraction of nanocellulose fibrils from lignocellulosic fibers: A novel approach. Carbohy. Poly. 86 (2011) 1468-1475. https://doi.org/10.1016/j.carbpol.2011.06.034

29. Singanusong R., Tochampa W., Kongbangkerd T ., Sodchit C. - Extraction and Properties of Cellulose from Banana Peels. Jour. of Sci. and Technol. 21 (2014) 201-213. Doi:10.14456/sjst.2014.16

30. Prakhongpan T., Nitithamyong A., Luanpituksa P. - Extraction and application of dietary fiber and cellulose from pineapple cores. Jour. of Food Scien. 67 (2006) 1308-1313. Doi:10.1111/j.1365-2621.2002.tb10279.x

31. Lojewska J., Miskoeiec P., Lojewski T., Pronienwicz L. M. - Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polymer Degradation and Stability 88 (2005) 512-520. Doi:10.1016/j.polymdegradstab.2004.12.012

32. Mwaikambo Y., Ansell M. P. - The effect of chemical treatment on the properties of hemp, sisal, jute and kapok fibers for composite reinforcement. Appl. Macromol. Chem. and Phys. 272 (1999) 108-116. Doi:10.1002/(SICI)1522-9505(19991201)272:1%3C108::AID-APMC108%3E3.0.CO;2-9

33. Yasmin Priya S., Arifuzzaman Khan G. M., Helal Uddin M., Ahsanul Haque M., Shaharul Islam M., Abdullah-Al-Mamun M., Gafur M. A., Shamsul Alam M. - Characterization of Micro-fibrillated Celllulose Produced from Sawmill Wastage: Crystallinity and Thermal Properties. Ame. Chem. Sci. Jour. 9 (2015) 1-8. Doi:10.9734/ACSJ/2015/19752

34. Bhariamalla A. K., Patil P. G., Deshmukh S. P., Vigneshwaran N. - Energy efficient production of nano-fibrillated cellulose (NFC) from cotton linters by tri-disc refining and its characterization. Cellu. Chem. and Tech. 51 (2017) 395-401. http://www.cellulosechemtechnol.ro/pdf/CCT5-6(2017)/p.395-401.pdf

35. Shahpar D. S. - Environmental Compliance Opportunities in the Bangladeshi Ready Made Garments Industry: Lessons from the Green High Achievers, September, (2018). https://www.greenpolicyplatform.org/sites/default/files/downloads/resource/EDGG+Paper+8+Green+Compliance+in+RMG.pdf

36. Wu S., Tang Z., Jiang Z., Yu Z., Wang L., Preparation and characterization of hydrophobic cotton fiber for water/oil separation by electrolysis plating combined with chemical corrosion. Inter. Res. Jou. of Pub. and Envi. Health 2 (2015) 144-150. http://dx.doi.org/10.15739/irjpeh.032

37. Park S., Baker J. O., Himmel M. E., Parilla P. A., Johnson D. K. - Cellulose Crystallinity Index: measurement techniques and their impact on interpreting cellulose performance. Biotech. for Biofu. 3 (2010) 1-10. Doi: 10.1186/1754-6834-3-10

38. Kanchanalai P., Temani G., Kawajiri Y., Matthew J. R. - Reaction Kinetics of Concentration Acid Hydrolysis for Cellulose and Hemicellulose and Effect of Crystsllinity. Bio-Reso. 11 (2016) 1672-1689. Doi:10.15376/biores.11.1.1672-1689

39. Yang H., Yan R., Dong H. L., Zheng C. - Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel 86 (2007) 1781-1788. Doi:10.1016/j.fuel.2006.12.013

Downloads

Published

28-04-2025

How to Cite

[1]
S. Pervin, S. M. A. R. Razzaque, G. M. A. K. Khan, Shamsul Alam, and M. Rahman, “Synthesis and characterization of microcrystalline and nanocrystalline cellulose from cotton linter for composite applications ”, Vietnam J. Sci. Technol., vol. 63, no. 2, pp. 311–326, Apr. 2025.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.