Study on solidified material from dredged sediment, fly ash, and blended Portland cement using the response surface method

Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/18519

Keywords:

dredged sediment, response surface methodology, solidification, hydrothermal, tobermorite, multi-objective optimization

Abstract

Treating dredged sediment is a complex processing and ongoing challenge. To utilize dredged sediment for the landfill or construction purposes, a material fabricated from a mixture of dredged sediment, Portland cement, and fly ash, was cured under room temperature and hydrothermal condition at 180 °C and 0.9 MPa pressure for 16 hours. The response surface methodology was used to evaluate the compressive strength of the material, with the range of factors investigated being the dredged sediments/solid ratio (0.3-0.9), cement/fly ash ratio (2-4), and water/solid ratio (0.45-0.55). The fitting models offered an accurate and reliable match to the actual data. The optimum mix proportions of two curing conditions were obtained using total desirability function, meet multi-objective criteria. This result finger out hydrothermal curing significantly enhances treatment capacity of dredged sediment, with a lower CO2 emission in the mixture compared to ambient curing. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to figure out the difference between the minerals formed in the material under two curing conditions, such as tobermorite.

Downloads

Download data is not yet available.

References

Capilla X., Schwartz C., Bedell J.-P., Sterckeman T., Perrodin Y. and Morel J.-L. - Physicochemical and biological characterisation of different dredged sediment deposit sites in France, Environ. Pollut., 143 (2006) 106-116. https://doi.org/10.1016/j.envpol.2005.11. 007. DOI: https://doi.org/10.1016/j.envpol.2005.11.007

Wang D., Abriak N. E. and Zentar R. - Strength and deformation properties of Dunkirk marine sediments solidified with cement, lime and fly ash, Eng. Geol., 166 (2013) 90-99. https://doi.org/10.1016/j.enggeo.2013.09.007. DOI: https://doi.org/10.1016/j.enggeo.2013.09.007

Vinh V. D., Hai N. M. and Lan T. D. - Proposal for appropriate solutions to reduce influences of sediment dumping activities in the Hai Phong open waters, Vietnam J. Mar. Sci. Technol., 19 (2019) 199-213. https://doi.org/10.15625/1859-3097/19/2/12567. DOI: https://doi.org/10.15625/1859-3097/19/2/12567

Akcil A., Erust C., Ozdemiroglu S., Fonti V. and Beolchini F. - A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes, J. Clean. Prod., 86 (2015) 24-36. https://doi.org/10.1016/j.jclepro.2014.08.009. DOI: https://doi.org/10.1016/j.jclepro.2014.08.009

Barjoveanu G., De Gisi S., Casale R., Todaro F., Notarnicola M. and Teodosiu C. - A life cycle assessment study on the stabilization/solidification treatment processes for contaminated marine sediments, J. Clean. Prod., 201 (2018) 391-402. https://doi.org/10.1016/ j.jclepro. 2018.08.053. DOI: https://doi.org/10.1016/j.jclepro.2018.08.053

Zhang W., Chen Y., Zhao L. and Chen L. - Mechanical behavior and constitutive relationship of mud with cement and fly ash, Constr. Build. Mater., 150 (2017) 426-434. https://doi.org/ 10.1016/j.conbuildmat.2017.05.163. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.163

Zentar R., Wang H. and Wang D. - Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material, Constr. Build. Mater., 279 (2021) 122-447. https://doi.org/10.1016/j.conbuildmat.2021. 122447. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122447

Todaro F., De Gisi S. and Notarnicola M. - Contaminated marine sediment stabilization/solidification treatment with cement/lime: leaching behaviour investigation, Environ. Sci. Pollut. R., 27 (2020) 21407-21415.https://doi.org/10.1007/s11356-020-08562-1. DOI: https://doi.org/10.1007/s11356-020-08562-1

Kolias S., Kasselouri-Rigopoulou V. and Karahalios A. - Stabilisation of clayey soils with high calcium fly ash and cement, Cem. Concr. Compos., 27 (2005) 301-313. https://doi.org/ 10.1016/j.cemconcomp.2004.02.019. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.019

Nu N. T., Son B. T. and Hai P. V. - Utilisation of ground granulated blast furnace slag (GGBFS) for soft soil improvement by deep mixing method, J. Min. Earth Sci., 61 (2020) 92-100. https://doi.org/10.46326/JMES.2020.61(1).10. DOI: https://doi.org/10.46326/JMES.2020.61(1).10

Wang L., Tsang D. C. W. and Poon C.-S. - Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification, Chemosphere, 122 (2015) 257-264. https://doi.org/10.1016/j.chemosphere. 2014.11.071. DOI: https://doi.org/10.1016/j.chemosphere.2014.11.071

Wang L., Yeung T. L. K., Lau A. Y. T., Tsang D. C. W. and Poon C.-S. - Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing, J. Clean. Prod., 164 (2017) 1279-1288. https://doi.org/10.1016/ j.jclepro.2017.07.070. DOI: https://doi.org/10.1016/j.jclepro.2017.07.070

Ramme B. W. - ACI 229R-99: Controlled Low-Strength Materials, American Concrete Institue (1999), pp. 1-15.

Yin B., Kang T., Kang J., Chen Y., Wu L. and Du M. - Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics, Appl. Clay Sci., 166 (2018) 146-158. https://doi.org/10.1016/j.clay.2018.09.019. DOI: https://doi.org/10.1016/j.clay.2018.09.019

Zhang K., Wei Q., Jiang S., Shen Z., Zhang Y., Tang R., Yang A. and W. K. Chow C. - Utilization of Dredged River Sediment in Preparing Autoclaved Aerated Concrete Blocks, J. Renew. Mater., 10 (2022) 2989-3008. https://doi.org/10.32604/ jrm.2022.019821. DOI: https://doi.org/10.32604/jrm.2022.019821

Ribeiro D., Néri R. and Cardoso R. - Influence of Water Content in the UCS of Soil-Cement Mixtures for Different Cement Dosages, Procedia Eng., 143 (2016) 59-66. https://doi.org/ 10.1016/j.proeng.2016.06.008. DOI: https://doi.org/10.1016/j.proeng.2016.06.008

Consoli N. C., Rosa D. A., Cruz R. C. and Rosa A. D. - Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil, Eng. Geol., 122 (2011) 328-333. https://doi.org/10.1016/j.enggeo.2011.05.017. DOI: https://doi.org/10.1016/j.enggeo.2011.05.017

Furlan A. P., Razakamanantsoa A., Ranaivomanana H., Amiri O., Levacher D. and Deneele D. - Effect of fly ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement, Constr. Build. Mater., 272 (2021) 121637. https://doi.org/10.1016/j.conbuildmat.2020.121637. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121637

Jamsawang P., Charoensil S., Namjan T., Jongpradist P. and Likitlersuang S. - Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials, Road Mater. Pavement, 22 (2021) 2498-2522. https://doi.org/10.1080/ 14680629.2020.1772349. DOI: https://doi.org/10.1080/14680629.2020.1772349

Yoobanpot N., Jamsawang P., Simarat P., Jongpradist P. and Likitlersuang S. - Sustainable reuse of dredged sediments as pavement materials by cement and fly ash stabilization, Journal of Soils and Sediments, 20 (2020) 3807-3823. https://doi. org/10.1007/s11368-020-02635-x. DOI: https://doi.org/10.1007/s11368-020-02635-x

Nguyen P. B. and Dao D. T. A. - Optimization of enzymatic hydrolysis conditions for increasing the efficiency of dry matter extracted from Limonia acidissima pulp by combined cellulase -pectinase enzymes using response surface methodology, Vietnam J. Sci. Technol, 55 (2017) 15. https://doi.org/10.15625/0866-708X/ 55/1/7472. DOI: https://doi.org/10.15625/0866-708X/55/1/7472

Ahmad M. and Rashid K. - Novel approach to synthesize clay-based geopolymer brick: Optimizing molding pressure and precursors’ proportioning, Constr. Build. Mater., 322 (2022) 126472. https://doi.org/10.1016/j.conbuildmat.2022.126472. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126472

Li S., Wang D., Tang C. and Chen Y. - Optimization of synergy between cement, slag, and phosphogypsum for marine soft clay solidification, Constr. Build. Mater., 374 (2023) 130902. https://doi.org/10.1016/j.conbuildmat.2023.130902. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130902

Srinivasa A. S., Swaminathan K. and Yaragal S. C. - Microstructural and optimization studies on novel one-part geopolymer pastes by Box-Behnken response surface design method, Case Stud. Constr. Mater., 18 (2023) e01946. https://doi.org/ 10.1016/j.cscm.2023.e01946. DOI: https://doi.org/10.1016/j.cscm.2023.e01946

Sridharan A., Prashanth J. P. and Sivapullaiah P. V. - Effect of fly ash on the unconfined compressive strength of black cotton soil, Proceedings of the Institution of Civil Engineers - Ground Improvement, Vol. 4, pp.169-175. https://doi.org/ 10.1680/gi.1997.010304. DOI: https://doi.org/10.1680/gi.1997.010304

Bui T. S., Nguyen T. N. and Nguyen T. D. - An Experimental Study on Unconfined Compressive Strength of Soft Soil-Cement Mixtures with or without GGBFS in the Coastal Area of Vietnam, Adv. Civ. Eng., 2020 (2020) 1-12. https://doi.org/10.1155/2020/7243704. DOI: https://doi.org/10.1155/2020/7243704

Pham V.-N., Oh E. and Ong D. E. L. - Effects of binder types and other significant variables on the unconfined compressive strength of chemical-stabilized clayey soil using gene-expression programming, Neural Comput. Appl., 34 (2022) 9103-9121. https://doi.org/10. 1007/s00521-022-06931-0. DOI: https://doi.org/10.1007/s00521-022-06931-0

Kockal N. U. and Ozturan T. - Optimization of properties of fly ash aggregates for high-strength lightweight concrete production, Mater. Des., 32 (2011) 3586-3593. https://doi.org/ 10.1016/ j.matdes.2011.02.028. DOI: https://doi.org/10.1016/j.matdes.2011.02.028

Shi X., Zhang C., Wang X., Zhang T. and Wang Q. - Response surface methodology for multi-objective optimization of fly ash-GGBS based geopolymer mortar, Constr. Build. Mater., 315 (2022) 125644. https://doi.org/10.1016/j.conbuildmat.2021.125644. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125644

Ebrahimzade I., Ebrahimi-Nik M., Rohani A. and Tedesco S. - Higher energy conversion efficiency in anaerobic degradation of bioplastic by response surface methodology, J. Clean. Prod., 290 (2021) 125840. https://doi.org/10.1016/ j.jclepro.2021.125840. DOI: https://doi.org/10.1016/j.jclepro.2021.125840

Bhairappanavar S., Liu R. and Shakoor A. - Eco-friendly dredged material-cement bricks, Constr. Build. Mater., 271 (2021) 121524. https://doi.org/10.1016/j.conbuildmat.2020.121524. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121524

Siam City Cement (Vietnam) Ltd., INSEE Sustainable Development Report 2020-2021 Vietnam, 2022, https://static.insee.com.vn/SUSTAINABLE_DEVELOPMENT_REPORT _2020_2021..pdf (accessed 02 July 2023).

Hammond G., Jones C., Lowrie F. and Tse P. - Embodied carbon: the Inventory of Carbon and Energy (ICE), BSRIA, Bracknell, 2011.

Skibsted J. and Hall C. - Characterization of cement minerals, cements and their reaction products at the atomic and nano scale, Cem. Concr. Res., 38 (2008) 205-225. https://doi.org/ 10.1016/j.cemconres.2007.09.010. DOI: https://doi.org/10.1016/j.cemconres.2007.09.010

Allen A. J., Thomas J. J. and Jennings H. M. - Composition and density of nanoscale calcium–silicate–hydrate in cement, Nat. Mater., 6 (2007) 311-316. https://doi.org/10.1038/nmat1871. DOI: https://doi.org/10.1038/nmat1871

Galvánková L., Másilko J., Solný T. and Štěpánková E. - Tobermorite Synthesis Under Hydrothermal Conditions, Procedia Eng., 151 (2016) 100-107. https://doi.org/10.1016/ j.proeng.2016.07.394. DOI: https://doi.org/10.1016/j.proeng.2016.07.394

Lothenbach B., Jansen D., Yan Y. and Schreiner J. - Solubility and characterization of synthesized 11 Å Al-tobermorite, Cem. Concr. Res., 159 (2022) 106871. https://doi.org/ 10.1016/j.cemconres.2022.106871. DOI: https://doi.org/10.1016/j.cemconres.2022.106871

Mostafa N. Y., Shaltout A. A., Omar H. and Abo-El-Enein S. A. - Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1nm tobermorites, J. Alloys Compd., 467 (2009) 332-337. https://doi.org/10.1016/j.jallcom.2007.11.130. DOI: https://doi.org/10.1016/j.jallcom.2007.11.130

Liang X., Wang C., Zhan J., Cui X. and Ren Z. - Study on preparation of eco-friendly autoclaved aerated concrete from low silicon and high iron ore tailings, J. New Mater. Electrochem. Syst, 22 (2019) 224-230. https://doi.org/10.14447/jnmes.v22i4.a08. DOI: https://doi.org/10.14447/jnmes.v22i4.a08

Downloads

Published

24-07-2024

How to Cite

[1]
T.-D. Thai, N. M. Huynh, T. Luu, K. Kieu Do Trung, N. Nguyen Vu Uyen, and M. Do Quang, “Study on solidified material from dredged sediment, fly ash, and blended Portland cement using the response surface method”, Vietnam J. Sci. Technol., vol. 61, no. 4, Jul. 2024.

Issue

Section

Materials