Production of porous material from solar panels waste glass

Bui Khac Thach, Truong Vu, Do Quang Minh, Ly Cam Hung, Phan Dinh Tuan
Author affiliations

Authors

  • Bui Khac Thach Faculty of Materials Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., Ward 14, District 10, Ho Chi Minh City, Viet Nam
  • Truong Vu Faculty of Materials Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., Ward 14, District 10, Ho Chi Minh City, Viet Nam
  • Do Quang Minh Faculty of Materials Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., Ward 14, District 10, Ho Chi Minh City, Viet Nam
  • Ly Cam Hung Hochiminh City University of Natural Resources and Environment, 236B Le Van Sy St., Tan Binh District, Ho Chi Minh City, Viet Nam
  • Phan Dinh Tuan Applied Research Institute of Natural Resources, Materials and Environment, 58/4 Tran Van Du St., Tan Binh District, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17630

Keywords:

heating microscope, porous material, waste glass from solar panels

Abstract

Porous material presents itself as a viable solution for recycling waste photovoltaic panels. In this study, the feasibility of utilizing waste solar panel glass to produce porous material was assessed by incorporating 10 weight percent (wt.%) CaCO3 and 10 wt.% water glass. A simulation of heating microscope method was utilized to determine the firing temperature for the porous material, ranging from 830 °C to 910 °C. The sintered samples have the specific volumetric density ranging from 0.40 to 0.43 g/cm3, water absorption ranging from 171.1 to 202.7 wt.% and apparent porosity of 76.1 to 78.2 %. The morphology of the porous material samples fired at various temperatures demonstrates that the pores’ structure is interconnected. The X-Ray Diffraction (XRD) patterns show that the porous material contains a glassy phase and an impurity one like Devitrite. The findings show that the porous glass not only holds water well, but it is also easy to be re-wetted. Therefore, the porous glass exhibits potential for use as a water-retaining medium, finding applications in various fields, including hydroponics and aquaponics.

Downloads

Download data is not yet available.

References

1. Chowdhury Md. S., Rahman K. S., Chowdhury T., Nuthammachot N., Techato K., Akhtaruzzaman Md., Tiong S. K., Sopian Sopian K., and Amin N. - An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews 27 (2020) 100431. doi: 10.1016/j.esr.2019.100431.

2. Liu P. S., and Chen G. F. - Chapter Six - Applications of Porous Ceramics In: Liu P. S., and Chen G. F. (Eds.), Porous Materials, Boston, Butterworth-Heinemann, 2014, pp. 303-344. doi: 10.1016/B978-0-12-407788-1.00006-X

3. Mohammed Al-Saudi S. K., and Géber R. - Production of lightweight geopolymer concrete with foam glass aggregate derived from cathode-ray glass waste, Case Studies in Construction Materials 21 (2024) e03888. doi: 10.1016/j.cscm.2024.e03888.

4. Chen B., Wang K., Chen X., and Lu A. - Study of Foam Glass with High Content of Fly Ash Using Calcium Carbonate as Foaming Agent, Materials Letters 79 (2012) 263-265. doi: 10.1016/j.matlet.2012.04.052.

5. da Silva R. C., Puglieri F. N., de Genaro Chiroli D. M., Bartmeyer G. A., Kubaski E. T., and Tebcherani S. M. - Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents, Science of the total Environment 771 (2021) 145276. doi: 10.1016/j.scitotenv.2021.145276.

6. Jeong T. U., Chu K. H., Kim S. J., Lee J., Chae K. J., and Hwang M. H. - Evaluation of foam-glass media in a high-rate filtration process for the removal of particulate matter containing phosphorus in municipal wastewater, Journal of Environmental Management 239 (2019) 159-166. doi: 10.1016/j.jenvman.2019.03.064.

7. Flood M., Fennessy L., Lockrey S., Avendano A., Glover J., Kandare E., and Bhat T. - Glass Fines: A review of cleaning and up-cycling possibilities, Journal of Cleaner Production,, 267 (2020) 121875. doi: 10.1016/j.jclepro.2020.121875.

8. Silva R. V., de Brito J., Lye C. Q., and Dhir R. K. - The role of glass waste in the production of ceramic-based products and other applications: A review, Journal of Cleaner Production 167 (2017) 346-364. doi: 10.1016/j.jclepro.2017.08.185.

9. Xu Y., Li J., Tan Q., Peters A. L., and Yang C. - Global status of recycling waste solar panels: A review, Waste Management 75 (2018) 450-458. doi: 10.1016/j.wasman. 2018.01.036.

10. Sanathi R., Banerjee S., and Bhowmik S. - A technical review of crystalline silicon photovoltaic module recycling, Solar Energy 281 (2024) 112869. doi:10.1016/ j.solener.2024.112869.

11. Lin K. L., Huang L. S., Shie J. L., Cheng C. J., Lee C. H., and Chang T. C. - Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks, Environmental Technology 34 (2013) 15-24. doi:10.1080/ 09593330.2012.679693.

12. Nguyen H. T., Nguyen Q. B., Nguyen V. P., and Pham T. K. - Syntheses and Characteristics of Calcium-Based Geopolymer from Solar-Cell Panel-Glass Waste by Hydrothermal Method, Materials and Technology 58 (2024) 467-475. doi: 10.17222/mit.2024.1153.

13. Lin K. L., Chu T. C., Cheng C. J., Lee C. H., Chang T. C., and Wang K. S. - Recycling solar panel waste glass sintered as glass-ceramics, Environmental Progress & Sustainable Energy 31 (2012) 612-618. doi: 10.1002/ep.10587.

14. Pavlopoulos C., Kelesi M., Michopoulos D., Papadopoulou K., Lymperopoulou T., Skaropoulou A., Tsivilis T., and Lyberatos G. - Management of end-of-life photovoltaic panels based on stabilization using Portland cement, Sustainable Chemistry and Pharmacy 27 (2022) 100687. doi: 10.1016/j.scp.2022.100687.

15. Zele S., Joshi A., Gogate N., Marathe D., and Shitole A. - Experimental investigation on utilization of crushed solar panel waste as sand replacement in concrete, Solar Energy 269 (2024) 112338. doi: 10.1016/j.solener.2024.112338.

16. Thach B. K., Tan L. N., Minh D. Q., Hung L. C., and Tuan P. D. - Production of Porous Glass-Foam Materials from Photovoltaic Panel Waste Glass In: Mohd Salleh M. A. A., Che Halin D. S., Abdul Razak K., and Ramli M. I. I. (Eds.), Proceedings of the Green Materials and Electronic Packaging Interconnect Technology Symposium, Singapore, Springer Nature, 2023, pp. 317-327. doi: 10.1007/978-981-19-9267-4_34

17. Mazurin O. V. - Problems of compatibility of the values of glass transition temperatures published in the world literature, Glass Physics and Chemistry 33 (2007) 22-36. doi:10.1134/S108765960701004X.

18. Venturelli C. - Heating Microscopy and its Applications, Microscopy Today 19 (2011) 20-25. doi: 10.1017/S1551929510001185.

19. DIN 51730, Determination of Fusibility of Fuel Ash, German Institute for Standardisation, 1998.

20. ISO 540:2008, Hard coal and coke - Determination of ash fusibility, International Organization for Standardization, 2008.

21. Thach B. K. - Study of manufacture of porous material-based waste solar panels, Viet Nam, 2022, (in Vietnamese).

22. ASTM C20-00, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, American Society for Testing and Materials, 2022.

23. Spiridonov Y. A., and Orlova L. A. - Problems of Foam Glass Production, Glass and Ceramics 60 (2003) 313-314. doi: 10.1023/B:GLAC.0000008234.79970.2c.

24. König J., Petersen R. R., and Yue Y. - Influence of the glass-calcium carbonate mixture’s characteristics on the foaming process and the properties of the foam glass, Journal of the European Ceramic Society 34 (2014) 1591-1598. doi: 10.1016/j.jeurceramsoc. 2013.12.020.

25. Kilinc E., and Hand R. J. - Mechanical properties of soda-lime-silica glasses with varying alkaline earth contents, Journal of Non-Crystalline Solids 429 (2015) 190-197. doi: 10.1016/j.jnoncrysol.2015.08.013.

26. Jiusti J., Zanotto E. D., Feller S. A., Austin H. J., Detar H. M., Bishop I., Manzani, D., Nakatsuka, Y., Watanabe, Y., and Inoue, H. - Effect of network formers and modifiers on the crystallization resistance of oxide glasses, Journal of Non-Crystalline Solids 550 (2020) 120359. doi: 10.1016/j.jnoncrysol.2020.120359.

27. Kahlenberg V., Girtler D., Arroyabe E., Kaindl R., and Többens D. M. - Devitrite (Na2Ca3Si6O16)-structural, spectroscopic and computational investigations on a crystalline impurity phase in industrial soda-lime glasses, Mineralogy and Petrology 100 (2010) 1-9. doi: 10.1007/s00710-010-0116-8.

28. Chung S. Y., Sikora P., Kim D. J., El Madawy M. E., and Abd Elrahman M. - Effect of different expanded aggregates on durability-related characteristics of lightweight aggregate concrete, Materials Characterization 173 (2021) 110907. doi:10.1016/ j.matchar.2021.110907.

29. Lauermannová A. M., Jankovský O., Sedmidubský D., Lojka M., Pavlíková M., Pivák A., Záleská M., and Pavlík Z. - Case study on MOC composites enriched by foamed glass and ground glass waste: Experimental assessment of material properties and performance, Case Studies in Construction Materials 18 (2023) e01836. doi:10.1016/ j.cscm.2023.e01836.

Downloads

Published

28-04-2025

How to Cite

[1]
T. Bui Khac, V. Truong, M. Do Quang, H. Ly Cam, and T. Đình Phan, “Production of porous material from solar panels waste glass”, Vietnam J. Sci. Technol., vol. 63, no. 2, pp. 327–337, Apr. 2025.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.