Prediction of self-terminating Ventricular Tachycardia in isolated rat heart experiments by using wavelet analysis

Author affiliations

Authors

  • Le Duy Manh Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0003-4291-8568
  • Bui Phuong Thuy Faculty of Natural Sciences, Duy Tan University, 254 Nguyen Van Linh, Da Nang, Viet Nam
  • Bui Van Hai 4Le Quy Don Technical University, 236 Hoang Quoc Viet, North Tu Liem Dist, Ha Noi, Viet Nam https://orcid.org/0000-0003-1442-4202
  • Man Minh Tan Faculty of Natural Sciences, Duy Tan University, 254 Nguyen Van Linh, Da Nang, Viet Nam https://orcid.org/0000-0002-4318-4482
  • Trinh Xuan Hoang Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0002-2672-562X
  • Pik-Yin Lai Department of Physics and Center for Complex Systems, National Central University, Chung-Li District, Taoyuan City, 320, Taiwan, ROC
  • C. K. Chan Institute of Physics, Academia Sinica, Taipei, Taiwan 115, ROC

DOI:

https://doi.org/10.15625/2525-2518/18176

Keywords:

Ventricular tachycardia, wavelet analysis, bivariate time series, mechano-electrical coupling

Abstract

This study investigates whether self-terminating and prolonged ventricular tachycardias (VT) can be differentiated using cross-wavelet analysis. VT is a type of arrhythmia that may persist or transform into other arrhythmias. In this study, 40 VT samples from 7 isolated rat hearts are analyzed, including 19 prolonged VTs and 21 self-terminating VTs (STVTs). Bivariate timeseries of left ventricular and right atrium are analyzed using cross-wavelet analysis to find correlations between the signals. The results show that self-terminating VT occurs most frequently when there is a weak correlation between the signals, while prolonged VT is associated with a strong correlation between ventricular and atrial signals. The study suggests that mechano-electrical interaction between the right atrium and left ventricle may be the underlying mechanism for this connection. The findings may have implications for understanding the underlined mechanism and treatment of VT in clinical practice.

Downloads

Download data is not yet available.

References

1. Karma A., Gilmore Jr R.F . - Nonlinear dynamics of heart rhythm disorders, Physics Today 60 (3) (2007) 51-57.

2. Myerburg R. J., Castellanos A. - Cardiac arrest and cardiac death, in: E. Braunwald (Eds), Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, PA, Saunders, 1997, pp. 742.

3. Sandoe E., Sigurd B. – Arrhythmia-A Guide to Clinical Electrocardiology, Chapter 3, Verlags GmbH, Bingen am Rhein, Germany, 1991.

4. Zipes D. P. and Wellens H. J. - Sudden cardiac death, Circulation 98 (21) (1998) 2334-2351.

5. Turakhia M., Tseng Z. H. - Sudden cardiac death: epidemiology, mechanisms, and therapy, Curr Probl Cardiol 32(9) (2007) 501-46.

6. Qu Z., Weiss J. N. - Dynamics and cardiac arrhythmias, J. Cardiovasc Electrophysiol 17 (2006) 1042-1049.

7. Befeler B. - Mechanical stimulation of the heart: its therapeutic value in tachyarrhythmia, Chest 73 (1978) 832-838.

8. Clayton R. H., Murray A., Higham P. D., Campbell R. W. - Self-terminating ventricular tachyarrhythmias--a diagnostic dilemma? Lancet 9 (1993) 341(8837).

9. Philip T. Sager, Robin A. Perlmutter, Lynda E. Rosenfeld, Craig A. McPherson, William P. Batsford - Rapid self-terminating ventricular tachycardia induced during electrophysiologic study: A prospective evaluation, Journal of the American College of Cardiology 13 (2) (1989) 385-390.

10. Clayton R. H. - Time-frequency analysis of ventricular arrhythmias, IEE Colloquium on Time-Frequency Analysis of Biomedical Signals, 1997.

11. Huang N. E, Shen Z., Long S., Wu M. C., Shih H. H, Zheng Q., Yen N. C., Tung C. C, Liu H. H. - The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non- Stationary Time Series Analysis, Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 454 (1998) 903-995.

12. Monalisa Mohanty, Manasa Dash, Pradyut Biswal, and Sukanta Sabut - Classification of ventricular arrhythmias using empirical mode decomposition and machine learning algorithms, Progress in Artificial Intelligence 10 (2021) 489-504.

13. Sadia Murawwat, Hafiz M. Asif, Sana Ijaz, Muhammad Imran Malik, Kaamran Raahemifar - Denoising and classification of Arrhythmia using MEMD and ANN, Alexandria Engineering Journal 61 (4) (2022) 2807-2823.

14. Yıldırım Ö., Pławiak P., Tan R. S., Acharya U. R. - Arrhythmia Detection Using Deep Convolutional Neural Network with Long Duration ECG Signals, Comput. Biol. Med. 102 (2018) 411-420.

15. Thomas Schreiber - Measuring Information Transfer, Phys. Rev. Lett. 85 (2000) 461.

16. Alan Jovic, Franjo Jovic - Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series, Biomedical Signal Processing and Control 31 (2017) 217-230.

17. Grinsted A., Moore J. C., Jevrejeva S. - Nonlinear Processes Geophys 11 (2004) 561; Matlab software package for performing wavelet and crosswavelet transform, http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence.

18. Maraun D., Kurths J., and Holschneider M. - Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and significance testing, Phys. Rev. E 75 (2007) 016707.

19. Le D. M., Dvornikov A. V., Lai P. Y., and Chan C. K. - Predicting Self-terminating Ventricular Fibrillation in an Isolated Heart, Europhys. Lett. 104 (2013) 48002.

20. National Research Council, Guide for the Care and Use of Laboratory Animals, National Academy Press, Washington, DC, 2011.

21. Dvornikov A. V., Mi Y. C., Chan C. K. - Transient analysis of force–frequency relationships in rat hearts perfused by Krebs-Henseleit and Tyrode solutions with different [Ca2+]o. Cardiovasc. Eng. Technol. 3 (2012) 203-210.

22. Quinn T.A., Kohl P. - Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm, Physiol. Rev. 101 (10) (2021) 37-92.

23. Kamkin A., Kiseleva I., Isenberg G., Wagner K.D., Günther J., Theres H., Scholz H. - Cardiac fibroblasts and the mechanoelectric feedback mechanism in healthy and diseased hearts, Prog. Biophys. Mol. Biol. 82 (2003) 111-120.

24. Biktasheva I., Biktashev V., Dawes W., Holden A., Saumarez R., Savill A. M. - Dissipation of the excitation front as a mechanism of self-terminating arrhythmias, Int. J. Bifurc. Chaos 13 (2003) 3645-3656.

25. de la Casa M. A., de la Rubia F. J., Ivanov P. C. - Patterns of spiral wave attenuation by low-frequency periodic planar fronts, Chaos 17 (2007) 015109.

Downloads

Published

23-12-2024

How to Cite

[1]
Le Duy Manh, “Prediction of self-terminating Ventricular Tachycardia in isolated rat heart experiments by using wavelet analysis”, Vietnam J. Sci. Technol., vol. 62, no. 6, pp. 1185–1195, Dec. 2024.

Issue

Section

Electronics - Telecommunication