Fast finite-time backstepping controller for a quadrotor UAV under state constraints

Mung Xuan Nguyen, Lanh Le Thanh, The Mich Nguyen
Author affiliations

Authors

  • Mung Xuan Nguyen Faculty of Technology, Dong Nai Technology University, Nguyen Khuyen, Bien Hoa, Dong Nai, Viet Nam
  • Lanh Le Thanh Faculty of Technology, Dong Nai Technology University, Nguyen Khuyen, Bien Hoa, Dong Nai, Viet Nam
  • The Mich Nguyen Department of Vehicle and Energy Conversion Engineering, School of Mechanical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18131

Keywords:

Quadrotor, backstepping, finite-time, state constraint, tracking control

Abstract

Quadrotors have gained popularity in a wide range of applications. In this paper, a new approach for solving the tracking control problem of quadrotors with full-state constraints is presented. The proposed method involves a backstepping control scheme integrated with a fast finite-time filter. First, necessary state transformations are performed to support the design of the finite-time filter and controller. Next, the controller is formulated based on the backstepping technique. All the state constraints are taken into consideration in the controller. However, it is well-known that the backstepping control design can lead to the “explosion of complexity” when calculating time derivatives of certain nonlinear functions. Therefore, the proposed filter comes to provide a solution for estimating the time derivatives with the estimation errors converging to zero in finite time. The closed-loop system's finite-time stability is rigorously proved using the Lyapunov theory, despite the state constraints. Simulation results demonstrate the feasibility and efficacy of the proposed method. 

Downloads

Download data is not yet available.

References

Idrissi M., Salami M. and Annaz F. - A Review of Quadrotor Unmanned Aerial Vehicles: Applications, Architectural Design and Control Algorithms. J Intell Robot Syst 104, 22 (2022). doi.org/10.1007/s10846-021-01527-7. DOI: https://doi.org/10.1007/s10846-021-01527-7

Xuan-Mung N., Nguyen N. P., Nguyen T., Pham D. B., Mai T. V., Ha L.N.N.T., Hong S. K. - Quadcopter precision landing on moving targets via disturbance observer-based controller and autonomous landing planner. IEEE Access, 10 (2022) 83580-83590. doi.org/10.1109/ACCESS.2022.3197181. DOI: https://doi.org/10.1109/ACCESS.2022.3197181

Xuan-Mung N., Nguyen N. P., Pham D. B., Dao N. N., Hong S.K. - Synthesized landing strategy for quadcopter to land precisely on a vertically moving apron. Mathematics, 10 (2022) 1328. doi.org/10.3390/math10081328. DOI: https://doi.org/10.3390/math10081328

Arif A., Wang H., Castaneda H., and Wang Y. - Finite-Time Tracking of Moving Platform with Single Camera for Quadrotor Autonomous Landing. IEEE Transactions on Circuits and Systems I: Regular Papers, (2023) 1-14, doi: 10.1109/TCSI.2023.3256063. DOI: https://doi.org/10.1109/TCSI.2023.3256063

Ahmad F., Kumar P., Bhandari A., Patil P. P. - Simulation of the Quadcopter Dynamics with LQR based Control. Materials Today: Proceedings, 24 (2020) 326–332. doi.org/10.1016/j.matpr.2020.04.282. DOI: https://doi.org/10.1016/j.matpr.2020.04.282

Xuan-Mung N., Song J.W., Hong S.K. - Quadrotor Robust Optimal Attitude Tracking Control subjected to Model Uncertainties and External Disturbances. 2019 19th International Conference on Control, Automation and Systems (ICCAS), 1450-1453. DOI: https://doi.org/10.23919/ICCAS47443.2019.8971497

Das H. - Dynamic Inversion Control of Quadrotor with a Suspended Load. IFAC-PapersOnLine, 51 (2018) 172-177. doi.org/10.1016/j.ifacol.2018.05.030. DOI: https://doi.org/10.1016/j.ifacol.2018.05.030

Xuan-Mung N., Hong S.K. - Robust Backstepping Trajectory Tracking Control of a Quadrotor with Input Saturation via Extended State Observer. Applied Science, 9 (2019) 5184. doi.org/10.3390/app9102122. DOI: https://doi.org/10.3390/app9235184

Bangura M., Mahony R. - Real-time Model Predictive Control for Quadrotors. IFAC Proceedings Volumes, 47 (2014) 11773-11780. doi.org/10.3182/20140824-6-ZA-1003.00203. DOI: https://doi.org/10.3182/20140824-6-ZA-1003.00203

Sylvain B., Nicolas G., Tarek H., Helene P., Laurent E. - A hierarchical controller for miniature VTOL UAVs: Design and stability analysis using singular perturbation theory. Control Eng. Pract., 19 (2011) 1099–1108. doi.org/10.1016/j.conengprac.2011.05.008. DOI: https://doi.org/10.1016/j.conengprac.2011.05.008

Lee J. W., Xuan-Mung N., Nguyen N. P., and Hong S. K. - Adaptive altitude flight control of quadcopter under ground effect and time-varying load: Theory and experiments. Journal of Vibration and Control, 29 (2023), 571-581. 10.1177/10775463211050169. DOI: https://doi.org/10.1177/10775463211050169

Khalil H. – Nonlinear Systems. Prentice-Hall, Englewood Cliffs, NJ, USA (2003).

Basri M. - Trajectory tracking control of autonomous quadrotor helicopter using robust neural adaptive backstepping approach. Journal of Aerospace Engineering, 31 (2018) 04017091. doi.org/10.1061/(ASCE)AS.1943-5525.0000804. DOI: https://doi.org/10.1061/(ASCE)AS.1943-5525.0000804

Zou Y. and Meng Z. - Immersion and invariance-based adaptive controller for quadrotor systems. IEEE Trans. Syst., Man, Cybern., Syst., 49 (2018) 2288-2297. doi.org/ 10.1109/TSMC.2018.2790929. DOI: https://doi.org/10.1109/TSMC.2018.2790929

Huang Y. and Xue W. - Active disturbance rejection control: Methodology and theoretical analysis. ISA Trans., 53 (2014) 963-976. DOI: https://doi.org/10.1016/j.isatra.2014.03.003

Aboudonia A., El-Badawy A., and Rashad R. - Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command filtering backstepping approach. Nonlinear Dyn., 90 (2017) 581–597. DOI: https://doi.org/10.1007/s11071-017-3683-y

X. Shao, J. Liu, H. Cao, C. Shen, and H. Wang - Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer. Int. J. Robust Nonlinear Control, 28 (2018) 2700–2719. DOI: https://doi.org/10.1002/rnc.4044

Xuan-Mung, N.; Golestani, M. Smooth, Singularity-Free, Finite-Time Tracking Control for Euler–Lagrange Systems. Mathematics 10 (2022), 3850. https://doi.org/10.3390/math10203850 DOI: https://doi.org/10.3390/math10203850

Zuo Z. Y. - Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 54 (2015) 305–309. DOI: https://doi.org/10.1016/j.automatica.2015.01.021

Q. Hu, B. Jiang and Y. Zhang - Observer-Based Output Feedback Attitude Stabilization for Spacecraft with Finite-Time Convergence. IEEE Trans. Cont. Syst. Tech., 27 (2019) 781-789. doi: 10.1109/TCST.2017.2780061. DOI: https://doi.org/10.1109/TCST.2017.2780061

Polyakov A. - Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control, 57 (2012) 2106–2110. DOI: https://doi.org/10.1109/TAC.2011.2179869

Flame Wheel ARF Kit. Available online: https://www.dji.com/kr/flame-wheel-arf/spec (accessed on 1 March 2023).

DJI E305. Available online: http://www.dji.com/product/e305 (accessed on 1 March 2023).

Downloads

Published

30-06-2023

How to Cite

[1]
Mung Xuan Nguyen, L. Le Thanh, and T. M. Nguyen, “Fast finite-time backstepping controller for a quadrotor UAV under state constraints”, Vietnam J. Sci. Technol., vol. 62, no. 2, pp. 387–401, Jun. 2023.

Issue

Section

Mechanical Engineering - Mechatronics