Efficient and reliable detection of rhodamine B using SERS from silver-decorated photonic crystal silicon nanoscale pores

Do Thuy Chi, Nguyen Thuy Van, Vu Duc Chinh, Hoang Thi Hong Cam, Vilaysak Sayyasone, Pham Thanh Binh, Bui Huy, Pham Van Hoi
Author affiliations


  • Do Thuy Chi Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Thai Nguyen, Viet Nam
  • Nguyen Thuy Van Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Vu Duc Chinh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Hoang Thi Hong Cam University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Vilaysak Sayyasone Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Thai Nguyen, Viet Nam
  • Pham Thanh Binh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam;
    Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Bui Huy Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam;
    Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Pham Van Hoi Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam;
    Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam




porous silicon, photonic crystal, silver nanopaticles, SERS, Rhodamine B


Porous silicon photonic crystal (PSi PhC) decorated with silver nanoparticles (AgNPs) is shown to provide a new substrate for the improvement of SERS. AgNPs are obtained through immersion of PSi PhC samples in AgNO3 solutions and successive thermal annealing. The nanocomposite material generated by adding AgNPs inside the silicon nanoscale pores, integrates the ability of metal surfaces to amplify Raman scattering signals and an enlarged surface area. Besides, PhC structure formed by multilayer PSi increases interaction time of light and matter of the multilayer structure. The experimental results show that the AgNPs-decorated PSi PhC has the largest Raman intensity in comparison with other SERS substrates based on Si. The enhancement of Raman signals also reduces the threshold of the detection down to below 10-10 M. The analytical enhancement factor of AgNPs/PSi PhC SERS substrate for the detection of Rhodamine B (RhB) reaches 1010. This proposed AgNPs/PSi PhC SERS substrate could serve as a potential candidate for detecting RhB in foodstuffs at very low concentrations.


Download data is not yet available.


Al-Buriahi A. K., Al-Gheethi A. A., Kumar P. S., Mohamed R. M. S. R., Yusof H., Alshalif A. F., Khalifa N. A. - Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches, Chemosphere, 287 (2022) 132162. https://doi.org/10.1016/j.chemosphere.2021.132162. DOI: https://doi.org/10.1016/j.chemosphere.2021.132162 https://doi.org/10.1016/j.chemosphere.2021.132162.">

Erbas Z. and Soylak M. - Determination of Rhodamine B by UV–Vis spectrophotometry in cosmetics after microextraction by using heat-induced homogeneous liquid–liquid extraction method, J. Iran. Chem. Soc., 19 (2022) 3935–3942. https://doi.org/10.1007/s13738-022-02579-8. DOI: https://doi.org/10.1007/s13738-022-02579-8 https://doi.org/10.1007/s13738-022-02579-8.">

Huang Y., Wang D., Liu W., Zheng L., Wang Y., Liu X., Fan M., Gong Z., - Rapid screening of rhodamine B in food by hydrogel solid-phase extraction coupled with direct fluorescence detection, Food Chem., 316 (2020) 126378. https://doi.org/10.1016/j.foodchem.2020.126378. DOI: https://doi.org/10.1016/j.foodchem.2020.126378 https://doi.org/10.1016/j.foodchem.2020.126378.">

Cheng Y.-Y. and Tsai T.-H. - Pharmacokinetics and Biodistribution of the Illegal Food Colorant Rhodamine B in Rats, J. Agric. Food Chem., 65 (2017) 1078–1085. https://doi.org/10.1021/acs.jafc.6b04975. DOI: https://doi.org/10.1021/acs.jafc.6b04975 https://doi.org/10.1021/acs.jafc.6b04975.">

Merouani S., Hamdaoui O., Saoudi F., and Chiha M. - Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives, Chem. Eng. J., 158 (2010) 550–557. https://doi.org/10.1016/j.cej.2010.01.048. DOI: https://doi.org/10.1016/j.cej.2010.01.048 https://doi.org/10.1016/j.cej.2010.01.048.">

Gagliardi L., De Orsi D., Cavazzutti G., Multari G., and Tonelli D. - HPLC determination of rhodamine B (C.I. 45170) in cosmetic products, Chromatographia, 43 (1996) 76–78. https://doi.org/10.1007/BF02272825. DOI: https://doi.org/10.1007/BF02272825 https://doi.org/10.1007/BF02272825.">

Xiao N., Deng J., Huang K., Ju S., Hu C., and Liang J. - Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid–liquid microextraction, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 128 (2014) 312–318. https://doi.org/10.1016/j.saa.2014.02.180. DOI: https://doi.org/10.1016/j.saa.2014.02.180 https://doi.org/10.1016/j.saa.2014.02.180.">

Yilmaz E. and Soylak M. - A novel and simple deep eutectic solvent based liquid phase microextraction method for rhodamine B in cosmetic products and water samples prior to its spectrophotometric determination, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 202 (2018) 81–86. https://doi.org/10.1016/j.saa.2018.04.073. DOI: https://doi.org/10.1016/j.saa.2018.04.073 https://doi.org/10.1016/j.saa.2018.04.073.">

Oplatowska M. and Elliott C. T. - Development and validation of rapid disequilibrium enzyme-linked immunosorbent assays for the detection of Methyl Yellow and Rhodamine B dyes in foods, Analyst, 136 (2011) 2403-2410. https://doi.org/10.1039/C0AN00934B. DOI: https://doi.org/10.1039/c0an00934b https://doi.org/10.1039/C0AN00934B.">

Krajczewski J., Ambroziak R., and Kudelski A. - Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization, Nanomaterials, 11 (2020) 75. https://doi.org/10.3390/nano11010075. DOI: https://doi.org/10.3390/nano11010075 https://doi.org/10.3390/nano11010075.">

Nilghaz A., Mahdi M. S., Amiri A., Tian J., Cao R., and Wang X., - Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis, J. Agric. Food Chem., 70 (2022) 5463–5476. https://doi.org/10.1021/acs.jafc.2c00089. DOI: https://doi.org/10.1021/acs.jafc.2c00089 https://doi.org/10.1021/acs.jafc.2c00089.">

Han Y., Qiang L., Gao Y., Gao J., He Q., Liu H., Han L., Zhang Y. - Large-area surface-enhanced Raman spectroscopy substrate by hybrid porous GaN with Au/Ag for breast cancer miRNA detection, Appl. Surf. Sci., 541 (2021) 148456. https://doi.org/10.1016/j.apsusc.2020.148456. DOI: https://doi.org/10.1016/j.apsusc.2020.148456 https://doi.org/10.1016/j.apsusc.2020.148456.">

Bandarenka H. V., Girel K. V., Zavatski S. A., Panarin A., and Terekhov S. N. - Progress in the development of SERS-active substrates based on metal-coated porous silicon, Materials (Basel)., 11 (2018) 852. https://doi.org/10.3390/ma11050852. DOI: https://doi.org/10.3390/ma11050852 https://doi.org/10.3390/ma11050852.">

Kosović M., Balarin M., Ivanda M., Đerek V., Marciuš M., Ristić M., and Gamulin O. - Porous silicon covered with silver nanoparticles as Surface-Enhanced Raman Scattering (SERS) substrate for ultra-low concentration detection, Appl. Spectrosc., 69 (2015) 1417–1424. https://doi.org/10.1366/14-07729. DOI: https://doi.org/10.1366/14-07729 https://doi.org/10.1366/14-07729.">

Chook S. W., Chia C. H., Chan C. H., Chin S. X., Zakaria S., Sajabab M. S. and Huang N. M. - A porous aerogel nanocomposite of silver nanoparticles-functionalized cellulose nanofibrils for SERS detection and catalytic degradation of rhodamine B, RSC Adv., 5 (2015) 88915–88920. https://doi.org/10.1039/C5RA18806G. DOI: https://doi.org/10.1039/C5RA18806G https://doi.org/10.1039/C5RA18806G.">

Ran Y., Strobbia P., Cupil-Garcia V., and Vo-Dinh T. - Fiber-optrode SERS probes using plasmonic silver-coated gold nanostars, Sens. Actuators B Chem., 287 (2019) 95–101. https://doi.org/10.1016/j.snb.2019.01.167. DOI: https://doi.org/10.1016/j.snb.2019.01.167 https://doi.org/10.1016/j.snb.2019.01.167.">

Yang C., Qing C., Wang Q., Zhang X., Lou J., and Liu Y. - Synthesis of the hybrid CdS/Au flower-like nanomaterials and their SERS application, Sens. Actuators B Chem., 304 (2020) 127218. https://doi.org/10.1016/j.snb.2019.127218. DOI: https://doi.org/10.1016/j.snb.2019.127218 https://doi.org/10.1016/j.snb.2019.127218.">

Phuong N. T. T., Hoang T. X., Tran N. L. N., Phuc L. G., Viet-Duc P., Hanh K. T. T., Bach T. N., Tran N. H. T., Kieu T. L. T. - Rapid and sensitive detection of Rhodamine B in food using the plasmonic silver nanocube-based sensor as SERS active substrate, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 263 (2021) 120179. https://doi.org/10.1016/j.saa.2021.120179. DOI: https://doi.org/10.1016/j.saa.2021.120179 https://doi.org/10.1016/j.saa.2021.120179.">

Lu Z., Wei W., Yang J., Xu Q., and Hu X.-Y. - Improved SERS performance of a silver triangular nanoparticle/TiO 2 nanoarray heterostructure and its application for food additive detection, New J. Chem., 46 (2022) 7070–7077. https://doi.org/10.1039/D2NJ00388K. DOI: https://doi.org/10.1039/D2NJ00388K https://doi.org/10.1039/D2NJ00388K.">

Wang X., Zhang E., Shi H., Tao Y., and Ren X. - Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement, Analyst, 147 (2022) 1257–1272. https://doi.org/10.1039/D1AN02165F. DOI: https://doi.org/10.1039/D1AN02165F https://doi.org/10.1039/D1AN02165F.">

Xiang S., Wang X., Pang Y., Ge C., Xu Y., Chen L., Li S., Wang L. - Porous Au/AAO: A simple and feasible SERS substrate for dynamic monitoring and mechanism analysis of DNA oxidation, Appl. Surf. Sci., 606 (2022) 154842. https://doi.org/10.1016/j.apsusc.2022.154842. DOI: https://doi.org/10.1016/j.apsusc.2022.154842 https://doi.org/10.1016/j.apsusc.2022.154842.">

Zhong F., Wu Z., Guo J., and Jia D. - Porous Silicon Photonic Crystals Coated with Ag Nanoparticles as Efficient Substrates for Detecting Trace Explosives Using SERS, Nanomaterials, 8 (2018) 872. https://doi.org/10.3390/nano8110872. DOI: https://doi.org/10.3390/nano8110872 https://doi.org/10.3390/nano8110872.">

Škrabić M., Kosović M., Gotić M., Mikac L., Ivanda M., and Gamulin O. - Near-Infrared Surface-Enhanced Raman Scattering on Silver-Coated Porous Silicon Photonic Crystals, Nanomaterials, 9 (2019) 421. https://doi.org/10.3390/nano9030421. DOI: https://doi.org/10.3390/nano9030421 https://doi.org/10.3390/nano9030421.">

Singh N., Shrivastav A. M., Vashistha N., and Abdulhalim I. - 3D plasmonic hot spots network via gold decorated deep micro-porous silicon exhibiting ultrahigh-SERS enhancement with application to explosives detection, Sens. Actuators B Chem., 374 (2023) 132813. https://doi.org/10.1016/j.snb.2022.132813. DOI: https://doi.org/10.1016/j.snb.2022.132813 https://doi.org/10.1016/j.snb.2022.132813.">

Hammad Q. K., Ayyash A. N., and Mutlak F. A.-H. - Improving SERS substrates with Au/Ag-coated Si nanostructures generated by laser ablation synthesis in PVA, J. Opt., (2022). https://doi.org/10.1007/s12596-022-00971-4. DOI: https://doi.org/10.1007/s12596-022-00971-4 https://doi.org/10.1007/s12596-022-00971-4.">

Lin S., Zhu W., Jin Y., and Crozier K. B. - Surface-Enhanced Raman Scattering with Ag Nanoparticles Optically Trapped by a Photonic Crystal Cavity, Nano Lett., 13 (2013) 559–563. https://doi.org/10.1021/nl304069n. DOI: https://doi.org/10.1021/nl304069n https://doi.org/10.1021/nl304069n.">

Kong X., Xi Y., LeDuff P., Li E., Liu Y., Cheng L.-J., Rorrer G. L., Tan H., and Wang A. X., - Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica, Nanoscale, 8 (2016) 17285–17294. https://doi.org/10.1039/C6NR05809D. DOI: https://doi.org/10.1039/C6NR05809D https://doi.org/10.1039/C6NR05809D.">

Wang J., Jia Z., and Liu Y. - Improvement of SERS by the Optical Modulation of Photonic Crystal, IEEE Sens. J., 19 (2019) 11221–11227. https://doi.org/10.1109/JSEN.2019.2937092. DOI: https://doi.org/10.1109/JSEN.2019.2937092 https://doi.org/10.1109/JSEN.2019.2937092.">

Ivanov I. I., Skryshevsky V. A., Serdiuk T., and Lysenko V. - Kinetics of adsorption–desorption processes of alcohol molecules in porous silicon Bragg mirror,” Sens. Actuators B Chem., 174 (2012) 521–526. https://doi.org/10.1016/j.snb.2012.02.056. DOI: https://doi.org/10.1016/j.snb.2012.02.056 https://doi.org/10.1016/j.snb.2012.02.056.">

Bui H., Pham V. H., Pham V. D., Hoang T. H. C., Pham T. B., Do T. C., Ngo Q. M. and Nguyen T. V. - Determination of low solvent concentration by nano-porous silicon photonic sensors using volatile organic compound method, Environ. Technol., 40 (2019) 3403–3411. https://doi.org/10.1080/09593330.2018.1474268. DOI: https://doi.org/10.1080/09593330.2018.1474268 https://doi.org/10.1080/09593330.2018.1474268.">

Giorgis F., Descrovi E., Chiodoni A., Froner E., Scarpa M., Venturello A., Geobaldo F. - Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate, Appl. Surf. Sci., 254 (2008) 7494–7497. https://doi.org/10.1016/j.apsusc.2008.06.029. DOI: https://doi.org/10.1016/j.apsusc.2008.06.029 https://doi.org/10.1016/j.apsusc.2008.06.029.">

Novara C., Marta S. D., Virga A., Lamberti A., Angelini A., Chiadò A., Rivolo P., Geobaldo F., Sergo V., Bonifacio A., and Giorgis F. - SERS-Active Ag Nanoparticles on Porous Silicon and PDMS Substrates: A Comparative Study of Uniformity and Raman Efficiency, J. Phys. Chem. C, 120 (2016) 16946–16953. https://doi.org/10.1021/acs.jpcc.6b03852. DOI: https://doi.org/10.1021/acs.jpcc.6b03852 https://doi.org/10.1021/acs.jpcc.6b03852.">

Maiti R., Sinha T. K., Mukherjee S., Adhikari B., and Ray S. K. - Enhanced and Selective Photodetection Using Graphene-Stabilized Hybrid Plasmonic Silver Nanoparticles, Plasmonics, 11 (2016) 1297–1304. https://doi.org/10.1007/s11468-015-0175-0. DOI: https://doi.org/10.1007/s11468-015-0175-0 https://doi.org/10.1007/s11468-015-0175-0.">

Govorov A. O. and Carmeli I. - Hybrid Structures Composed of Photosynthetic System and Metal Nanoparticles: Plasmon Enhancement Effect, Nano Lett., 7 (2007) 620–625. https://doi.org/10.1021/nl062528t. DOI: https://doi.org/10.1021/nl062528t https://doi.org/10.1021/nl062528t.">

Len’shin A. S., Kashkarov V. M., Turishchev S. Y., Smirnov M. S., and Domashevskaya E. P. - Effect of natural aging on photoluminescence of porous silicon, Tech. Phys. Lett., 37 (2011) 789–792. https://doi.org/10.1134/S1063785011090124. DOI: https://doi.org/10.1134/S1063785011090124 https://doi.org/10.1134/S1063785011090124.">

Sinha S., Piekiel N. W., Smith G. L., and Morris C. J. - Investigating aging effects for porous silicon energetic materials, Combust. Flame, 181 (2017) 164–171. https://doi.org/10.1016/j.combustflame.2017.03.015. DOI: https://doi.org/10.1016/j.combustflame.2017.03.015 https://doi.org/10.1016/j.combustflame.2017.03.015.">

Lu G., Wang G., and Li H. - Effect of nanostructured silicon on surface enhanced Raman scattering, RSC Adv., 8 (2018) 6629–6633. https://doi.org/10.1039/C8RA00014J. DOI: https://doi.org/10.1039/C8RA00014J https://doi.org/10.1039/C8RA00014J.">

Yang D., Mircescu N. E., Zhou H., Leopold N., Chiş V., Oltean M., Ying Y, Haisch C. - DFT study and quantitative detection by surface-enhanced Raman scattering (SERS) of ethyl carbamate, J. Raman Spectrosc., 44 (2013) 1491–1496. https://doi.org/10.1002/jrs.4375. DOI: https://doi.org/10.1002/jrs.4375 https://doi.org/10.1002/jrs.4375.">

Wang J., Luo H., Zhang M., Zu X., Li Z., and Yi G. - Aligned Chemically Etched Silver Nanowire Monolayer as Surface-Enhanced Raman Scattering Substrates, Nanoscale Res. Lett., 12 (2017). 587. https://doi.org/10.1186/s11671-017-2358-4. DOI: https://doi.org/10.1186/s11671-017-2358-4 https://doi.org/10.1186/s11671-017-2358-4.">

Dridi H., Haji L., and Moadhen A. - Rough SERS substrate based on gold coated porous silicon layer prepared on the silicon backside surface, Superlattices Microstruct., 104 (2017) 266–270. https://doi.org/10.1016/j.spmi.2017.02.002. DOI: https://doi.org/10.1016/j.spmi.2017.02.002 https://doi.org/10.1016/j.spmi.2017.02.002.">

Delfan A., Liscidini M., and Sipe J. E. - Surface enhanced Raman scattering in the presence of multilayer dielectric structures, J. Opt. Soc. Am. B, 29 (2012) 1863-1874. https://doi.org/10.1364/JOSAB.29.001863. DOI: https://doi.org/10.1364/JOSAB.29.001863 https://doi.org/10.1364/JOSAB.29.001863.">

Mamichev D. A., Gonchar K. A., Timoshenko V. Y., Mussabek G. K., Nikulin V. E., and Taurbaev T. I. - Enhanced Raman scattering in multilayer structures of porous silicon, J. Raman Spectrosc., 42 (2011) 1392–1395. https://doi.org/10.1002/jrs.2865. DOI: https://doi.org/10.1002/jrs.2865 https://doi.org/10.1002/jrs.2865.">

Chan S., Kwon S., Koo T.-W., Lee L. P., and Berlin A. A. - Surface-Enhanced Raman Scattering of Small Molecules from Silver-Coated Silicon Nanopores, Adv. Mater., 15 (2003) 1595–1598. https://doi.org/10.1002/adma.200305149. DOI: https://doi.org/10.1002/adma.200305149 https://doi.org/10.1002/adma.200305149.">

Wali L. A., Hasan K. K., and Alwan A. M. - Rapid and Highly Efficient Detection of Ultra-low Concentration of Penicillin G by Gold Nanoparticles/Porous Silicon SERS Active Substrate, Spectrochim. Acta A Mol. Biomol. Spectrosc., 206 (2019) 31–36. https://doi.org/10.1016/j.saa.2018.07.103. DOI: https://doi.org/10.1016/j.saa.2018.07.103 https://doi.org/10.1016/j.saa.2018.07.103.">

Hasi W.-L.-J., Lin S., Lin X., Lou X.-T., Yang F., Lin D.-Y., Lu Z.-W. - Rapid fabrication of self-assembled interfacial film decorated filter paper as an excellent surface-enhanced Raman scattering substrate. Anal. Methods, 6 (2014) 9547-9553. https://doi.org/10.1039/C4AY01775G. DOI: https://doi.org/10.1039/C4AY01775G https://doi.org/10.1039/C4AY01775G.">

Yan Z.-X., Zhang Y.L., Wang W., Fu X.Y., Jiang H.-B., Liu Y.Q., Verma P., Kawata S., Sun H.B. - Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference. ACS Appl. Mater. Interfaces 7 (2015) 27059–27065. https://doi.org/10.1021/acsami.5b09128. DOI: https://doi.org/10.1021/acsami.5b09128 https://doi.org/10.1021/acsami.5b09128.">

Kundu A., Rani R., Hazra K.S. - Controlled nanofabrication of metal-free SERS substrate on few layered black phosphorus by low power focused laser irradiation. Nanoscale 11 (2019) 16245–16252. https://doi.org/10.1039/C9NR02615K. DOI: https://doi.org/10.1039/C9NR02615K https://doi.org/10.1039/C9NR02615K.">

Lixia Z., Peng L., Lan L., Xiangfeng B., Xiaolei W., Bing Z., Yuan T., - Sensitive Detection of Rhodamine B in Condiments Using SurfaceEnhanced Resonance Raman Scattering (SERRS) Silver Nanowires as Substrate. Appl. Spectrosc. 71 (2017) 2395-2403. https://doi.org/10.1177/0003702817711700 DOI: https://doi.org/10.1177/0003702817711700 https://doi.org/10.1177/0003702817711700">




How to Cite

Do Thuy Chi, “Efficient and reliable detection of rhodamine B using SERS from silver-decorated photonic crystal silicon nanoscale pores”, Vietnam J. Sci. Technol., vol. 61, no. 4, pp. 620–630, Jun. 2023.