Efficient and reliable detection of rhodamine B using SERS from silver-decorated photonic crystal silicon nanoscale pores
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18064Keywords:
porous silicon, photonic crystal, silver nanopaticles, SERS, Rhodamine BAbstract
Porous silicon photonic crystal (PSi PhC) decorated with silver nanoparticles (AgNPs) is shown to provide a new substrate for the improvement of SERS. AgNPs are obtained through immersion of PSi PhC samples in AgNO3 solutions and successive thermal annealing. The nanocomposite material generated by adding AgNPs inside the silicon nanoscale pores, integrates the ability of metal surfaces to amplify Raman scattering signals and an enlarged surface area. Besides, PhC structure formed by multilayer PSi increases interaction time of light and matter of the multilayer structure. The experimental results show that the AgNPs-decorated PSi PhC has the largest Raman intensity in comparison with other SERS substrates based on Si. The enhancement of Raman signals also reduces the threshold of the detection down to below 10-10 M. The analytical enhancement factor of AgNPs/PSi PhC SERS substrate for the detection of Rhodamine B (RhB) reaches 1010. This proposed AgNPs/PSi PhC SERS substrate could serve as a potential candidate for detecting RhB in foodstuffs at very low concentrations.
Downloads
References
Al-Buriahi A. K., Al-Gheethi A. A., Kumar P. S., Mohamed R. M. S. R., Yusof H., Alshalif A. F., Khalifa N. A. - Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches, Chemosphere, 287 (2022) 132162. https://doi.org/10.1016/j.chemosphere.2021.132162. DOI: https://doi.org/10.1016/j.chemosphere.2021.132162
Erbas Z. and Soylak M. - Determination of Rhodamine B by UV–Vis spectrophotometry in cosmetics after microextraction by using heat-induced homogeneous liquid–liquid extraction method, J. Iran. Chem. Soc., 19 (2022) 3935–3942. https://doi.org/10.1007/s13738-022-02579-8. DOI: https://doi.org/10.1007/s13738-022-02579-8
Huang Y., Wang D., Liu W., Zheng L., Wang Y., Liu X., Fan M., Gong Z., - Rapid screening of rhodamine B in food by hydrogel solid-phase extraction coupled with direct fluorescence detection, Food Chem., 316 (2020) 126378. https://doi.org/10.1016/j.foodchem.2020.126378. DOI: https://doi.org/10.1016/j.foodchem.2020.126378
Cheng Y.-Y. and Tsai T.-H. - Pharmacokinetics and Biodistribution of the Illegal Food Colorant Rhodamine B in Rats, J. Agric. Food Chem., 65 (2017) 1078–1085. https://doi.org/10.1021/acs.jafc.6b04975. DOI: https://doi.org/10.1021/acs.jafc.6b04975
Merouani S., Hamdaoui O., Saoudi F., and Chiha M. - Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives, Chem. Eng. J., 158 (2010) 550–557. https://doi.org/10.1016/j.cej.2010.01.048. DOI: https://doi.org/10.1016/j.cej.2010.01.048
Gagliardi L., De Orsi D., Cavazzutti G., Multari G., and Tonelli D. - HPLC determination of rhodamine B (C.I. 45170) in cosmetic products, Chromatographia, 43 (1996) 76–78. https://doi.org/10.1007/BF02272825. DOI: https://doi.org/10.1007/BF02272825
Xiao N., Deng J., Huang K., Ju S., Hu C., and Liang J. - Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid–liquid microextraction, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 128 (2014) 312–318. https://doi.org/10.1016/j.saa.2014.02.180. DOI: https://doi.org/10.1016/j.saa.2014.02.180
Yilmaz E. and Soylak M. - A novel and simple deep eutectic solvent based liquid phase microextraction method for rhodamine B in cosmetic products and water samples prior to its spectrophotometric determination, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 202 (2018) 81–86. https://doi.org/10.1016/j.saa.2018.04.073. DOI: https://doi.org/10.1016/j.saa.2018.04.073
Oplatowska M. and Elliott C. T. - Development and validation of rapid disequilibrium enzyme-linked immunosorbent assays for the detection of Methyl Yellow and Rhodamine B dyes in foods, Analyst, 136 (2011) 2403-2410. https://doi.org/10.1039/C0AN00934B. DOI: https://doi.org/10.1039/c0an00934b
Krajczewski J., Ambroziak R., and Kudelski A. - Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization, Nanomaterials, 11 (2020) 75. https://doi.org/10.3390/nano11010075. DOI: https://doi.org/10.3390/nano11010075
Nilghaz A., Mahdi M. S., Amiri A., Tian J., Cao R., and Wang X., - Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis, J. Agric. Food Chem., 70 (2022) 5463–5476. https://doi.org/10.1021/acs.jafc.2c00089. DOI: https://doi.org/10.1021/acs.jafc.2c00089
Han Y., Qiang L., Gao Y., Gao J., He Q., Liu H., Han L., Zhang Y. - Large-area surface-enhanced Raman spectroscopy substrate by hybrid porous GaN with Au/Ag for breast cancer miRNA detection, Appl. Surf. Sci., 541 (2021) 148456. https://doi.org/10.1016/j.apsusc.2020.148456. DOI: https://doi.org/10.1016/j.apsusc.2020.148456
Bandarenka H. V., Girel K. V., Zavatski S. A., Panarin A., and Terekhov S. N. - Progress in the development of SERS-active substrates based on metal-coated porous silicon, Materials (Basel)., 11 (2018) 852. https://doi.org/10.3390/ma11050852. DOI: https://doi.org/10.3390/ma11050852
Kosović M., Balarin M., Ivanda M., Đerek V., Marciuš M., Ristić M., and Gamulin O. - Porous silicon covered with silver nanoparticles as Surface-Enhanced Raman Scattering (SERS) substrate for ultra-low concentration detection, Appl. Spectrosc., 69 (2015) 1417–1424. https://doi.org/10.1366/14-07729. DOI: https://doi.org/10.1366/14-07729
Chook S. W., Chia C. H., Chan C. H., Chin S. X., Zakaria S., Sajabab M. S. and Huang N. M. - A porous aerogel nanocomposite of silver nanoparticles-functionalized cellulose nanofibrils for SERS detection and catalytic degradation of rhodamine B, RSC Adv., 5 (2015) 88915–88920. https://doi.org/10.1039/C5RA18806G. DOI: https://doi.org/10.1039/C5RA18806G
Ran Y., Strobbia P., Cupil-Garcia V., and Vo-Dinh T. - Fiber-optrode SERS probes using plasmonic silver-coated gold nanostars, Sens. Actuators B Chem., 287 (2019) 95–101. https://doi.org/10.1016/j.snb.2019.01.167. DOI: https://doi.org/10.1016/j.snb.2019.01.167
Yang C., Qing C., Wang Q., Zhang X., Lou J., and Liu Y. - Synthesis of the hybrid CdS/Au flower-like nanomaterials and their SERS application, Sens. Actuators B Chem., 304 (2020) 127218. https://doi.org/10.1016/j.snb.2019.127218. DOI: https://doi.org/10.1016/j.snb.2019.127218
Phuong N. T. T., Hoang T. X., Tran N. L. N., Phuc L. G., Viet-Duc P., Hanh K. T. T., Bach T. N., Tran N. H. T., Kieu T. L. T. - Rapid and sensitive detection of Rhodamine B in food using the plasmonic silver nanocube-based sensor as SERS active substrate, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 263 (2021) 120179. https://doi.org/10.1016/j.saa.2021.120179. DOI: https://doi.org/10.1016/j.saa.2021.120179
Lu Z., Wei W., Yang J., Xu Q., and Hu X.-Y. - Improved SERS performance of a silver triangular nanoparticle/TiO 2 nanoarray heterostructure and its application for food additive detection, New J. Chem., 46 (2022) 7070–7077. https://doi.org/10.1039/D2NJ00388K. DOI: https://doi.org/10.1039/D2NJ00388K
Wang X., Zhang E., Shi H., Tao Y., and Ren X. - Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement, Analyst, 147 (2022) 1257–1272. https://doi.org/10.1039/D1AN02165F. DOI: https://doi.org/10.1039/D1AN02165F
Xiang S., Wang X., Pang Y., Ge C., Xu Y., Chen L., Li S., Wang L. - Porous Au/AAO: A simple and feasible SERS substrate for dynamic monitoring and mechanism analysis of DNA oxidation, Appl. Surf. Sci., 606 (2022) 154842. https://doi.org/10.1016/j.apsusc.2022.154842. DOI: https://doi.org/10.1016/j.apsusc.2022.154842
Zhong F., Wu Z., Guo J., and Jia D. - Porous Silicon Photonic Crystals Coated with Ag Nanoparticles as Efficient Substrates for Detecting Trace Explosives Using SERS, Nanomaterials, 8 (2018) 872. https://doi.org/10.3390/nano8110872. DOI: https://doi.org/10.3390/nano8110872
Škrabić M., Kosović M., Gotić M., Mikac L., Ivanda M., and Gamulin O. - Near-Infrared Surface-Enhanced Raman Scattering on Silver-Coated Porous Silicon Photonic Crystals, Nanomaterials, 9 (2019) 421. https://doi.org/10.3390/nano9030421. DOI: https://doi.org/10.3390/nano9030421
Singh N., Shrivastav A. M., Vashistha N., and Abdulhalim I. - 3D plasmonic hot spots network via gold decorated deep micro-porous silicon exhibiting ultrahigh-SERS enhancement with application to explosives detection, Sens. Actuators B Chem., 374 (2023) 132813. https://doi.org/10.1016/j.snb.2022.132813. DOI: https://doi.org/10.1016/j.snb.2022.132813
Hammad Q. K., Ayyash A. N., and Mutlak F. A.-H. - Improving SERS substrates with Au/Ag-coated Si nanostructures generated by laser ablation synthesis in PVA, J. Opt., (2022). https://doi.org/10.1007/s12596-022-00971-4. DOI: https://doi.org/10.1007/s12596-022-00971-4
Lin S., Zhu W., Jin Y., and Crozier K. B. - Surface-Enhanced Raman Scattering with Ag Nanoparticles Optically Trapped by a Photonic Crystal Cavity, Nano Lett., 13 (2013) 559–563. https://doi.org/10.1021/nl304069n. DOI: https://doi.org/10.1021/nl304069n
Kong X., Xi Y., LeDuff P., Li E., Liu Y., Cheng L.-J., Rorrer G. L., Tan H., and Wang A. X., - Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica, Nanoscale, 8 (2016) 17285–17294. https://doi.org/10.1039/C6NR05809D. DOI: https://doi.org/10.1039/C6NR05809D
Wang J., Jia Z., and Liu Y. - Improvement of SERS by the Optical Modulation of Photonic Crystal, IEEE Sens. J., 19 (2019) 11221–11227. https://doi.org/10.1109/JSEN.2019.2937092. DOI: https://doi.org/10.1109/JSEN.2019.2937092
Ivanov I. I., Skryshevsky V. A., Serdiuk T., and Lysenko V. - Kinetics of adsorption–desorption processes of alcohol molecules in porous silicon Bragg mirror,” Sens. Actuators B Chem., 174 (2012) 521–526. https://doi.org/10.1016/j.snb.2012.02.056. DOI: https://doi.org/10.1016/j.snb.2012.02.056
Bui H., Pham V. H., Pham V. D., Hoang T. H. C., Pham T. B., Do T. C., Ngo Q. M. and Nguyen T. V. - Determination of low solvent concentration by nano-porous silicon photonic sensors using volatile organic compound method, Environ. Technol., 40 (2019) 3403–3411. https://doi.org/10.1080/09593330.2018.1474268. DOI: https://doi.org/10.1080/09593330.2018.1474268
Giorgis F., Descrovi E., Chiodoni A., Froner E., Scarpa M., Venturello A., Geobaldo F. - Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate, Appl. Surf. Sci., 254 (2008) 7494–7497. https://doi.org/10.1016/j.apsusc.2008.06.029. DOI: https://doi.org/10.1016/j.apsusc.2008.06.029
Novara C., Marta S. D., Virga A., Lamberti A., Angelini A., Chiadò A., Rivolo P., Geobaldo F., Sergo V., Bonifacio A., and Giorgis F. - SERS-Active Ag Nanoparticles on Porous Silicon and PDMS Substrates: A Comparative Study of Uniformity and Raman Efficiency, J. Phys. Chem. C, 120 (2016) 16946–16953. https://doi.org/10.1021/acs.jpcc.6b03852. DOI: https://doi.org/10.1021/acs.jpcc.6b03852
Maiti R., Sinha T. K., Mukherjee S., Adhikari B., and Ray S. K. - Enhanced and Selective Photodetection Using Graphene-Stabilized Hybrid Plasmonic Silver Nanoparticles, Plasmonics, 11 (2016) 1297–1304. https://doi.org/10.1007/s11468-015-0175-0. DOI: https://doi.org/10.1007/s11468-015-0175-0
Govorov A. O. and Carmeli I. - Hybrid Structures Composed of Photosynthetic System and Metal Nanoparticles: Plasmon Enhancement Effect, Nano Lett., 7 (2007) 620–625. https://doi.org/10.1021/nl062528t. DOI: https://doi.org/10.1021/nl062528t
Len’shin A. S., Kashkarov V. M., Turishchev S. Y., Smirnov M. S., and Domashevskaya E. P. - Effect of natural aging on photoluminescence of porous silicon, Tech. Phys. Lett., 37 (2011) 789–792. https://doi.org/10.1134/S1063785011090124. DOI: https://doi.org/10.1134/S1063785011090124
Sinha S., Piekiel N. W., Smith G. L., and Morris C. J. - Investigating aging effects for porous silicon energetic materials, Combust. Flame, 181 (2017) 164–171. https://doi.org/10.1016/j.combustflame.2017.03.015. DOI: https://doi.org/10.1016/j.combustflame.2017.03.015
Lu G., Wang G., and Li H. - Effect of nanostructured silicon on surface enhanced Raman scattering, RSC Adv., 8 (2018) 6629–6633. https://doi.org/10.1039/C8RA00014J. DOI: https://doi.org/10.1039/C8RA00014J
Yang D., Mircescu N. E., Zhou H., Leopold N., Chiş V., Oltean M., Ying Y, Haisch C. - DFT study and quantitative detection by surface-enhanced Raman scattering (SERS) of ethyl carbamate, J. Raman Spectrosc., 44 (2013) 1491–1496. https://doi.org/10.1002/jrs.4375. DOI: https://doi.org/10.1002/jrs.4375
Wang J., Luo H., Zhang M., Zu X., Li Z., and Yi G. - Aligned Chemically Etched Silver Nanowire Monolayer as Surface-Enhanced Raman Scattering Substrates, Nanoscale Res. Lett., 12 (2017). 587. https://doi.org/10.1186/s11671-017-2358-4. DOI: https://doi.org/10.1186/s11671-017-2358-4
Dridi H., Haji L., and Moadhen A. - Rough SERS substrate based on gold coated porous silicon layer prepared on the silicon backside surface, Superlattices Microstruct., 104 (2017) 266–270. https://doi.org/10.1016/j.spmi.2017.02.002. DOI: https://doi.org/10.1016/j.spmi.2017.02.002
Delfan A., Liscidini M., and Sipe J. E. - Surface enhanced Raman scattering in the presence of multilayer dielectric structures, J. Opt. Soc. Am. B, 29 (2012) 1863-1874. https://doi.org/10.1364/JOSAB.29.001863. DOI: https://doi.org/10.1364/JOSAB.29.001863
Mamichev D. A., Gonchar K. A., Timoshenko V. Y., Mussabek G. K., Nikulin V. E., and Taurbaev T. I. - Enhanced Raman scattering in multilayer structures of porous silicon, J. Raman Spectrosc., 42 (2011) 1392–1395. https://doi.org/10.1002/jrs.2865. DOI: https://doi.org/10.1002/jrs.2865
Chan S., Kwon S., Koo T.-W., Lee L. P., and Berlin A. A. - Surface-Enhanced Raman Scattering of Small Molecules from Silver-Coated Silicon Nanopores, Adv. Mater., 15 (2003) 1595–1598. https://doi.org/10.1002/adma.200305149. DOI: https://doi.org/10.1002/adma.200305149
Wali L. A., Hasan K. K., and Alwan A. M. - Rapid and Highly Efficient Detection of Ultra-low Concentration of Penicillin G by Gold Nanoparticles/Porous Silicon SERS Active Substrate, Spectrochim. Acta A Mol. Biomol. Spectrosc., 206 (2019) 31–36. https://doi.org/10.1016/j.saa.2018.07.103. DOI: https://doi.org/10.1016/j.saa.2018.07.103
Hasi W.-L.-J., Lin S., Lin X., Lou X.-T., Yang F., Lin D.-Y., Lu Z.-W. - Rapid fabrication of self-assembled interfacial film decorated filter paper as an excellent surface-enhanced Raman scattering substrate. Anal. Methods, 6 (2014) 9547-9553. https://doi.org/10.1039/C4AY01775G. DOI: https://doi.org/10.1039/C4AY01775G
Yan Z.-X., Zhang Y.L., Wang W., Fu X.Y., Jiang H.-B., Liu Y.Q., Verma P., Kawata S., Sun H.B. - Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference. ACS Appl. Mater. Interfaces 7 (2015) 27059–27065. https://doi.org/10.1021/acsami.5b09128. DOI: https://doi.org/10.1021/acsami.5b09128
Kundu A., Rani R., Hazra K.S. - Controlled nanofabrication of metal-free SERS substrate on few layered black phosphorus by low power focused laser irradiation. Nanoscale 11 (2019) 16245–16252. https://doi.org/10.1039/C9NR02615K. DOI: https://doi.org/10.1039/C9NR02615K
Lixia Z., Peng L., Lan L., Xiangfeng B., Xiaolei W., Bing Z., Yuan T., - Sensitive Detection of Rhodamine B in Condiments Using SurfaceEnhanced Resonance Raman Scattering (SERRS) Silver Nanowires as Substrate. Appl. Spectrosc. 71 (2017) 2395-2403. https://doi.org/10.1177/0003702817711700 DOI: https://doi.org/10.1177/0003702817711700
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.