A colorimetric assay with leuco crystal violet for the detection of inorganic phosphate in water

Minhaz Uddin Ahmed, Fareeha Arshad
Author affiliations

Authors

  • Minhaz Uddin Ahmed Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Bandar Seri Begawan, Brunei Darussalam
  • Fareeha Arshad Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Bandar Seri Begawan, Brunei Darussalam

DOI:

https://doi.org/10.15625/2525-2518/18063

Keywords:

Colourimetry, leuco-crystal violet, phosphate, water, digital imaging

Abstract

Phosphate enters the aquatic system through runoff from pastures, croplands, urban areas, and sewage treatment systems and fosters algal bloom causing eutrophication at higher concentrations in water. Therefore, controlling its concentration through routine monitoring of water quality in aquatic ecosystems is essential. Using a smartphone camera and colour analysis app, a simple colourimetric technique was developed to quantitatively detect inorganic phosphate in natural and treated drinking water samples using colourless leuco crystal violet (LCV). Upon reaction with phosphate (PO43−), LCV forms leuco crystal violet phosphate (LCV-P) complex with a violet colour and shows maximum absorbance at 583 nm. A light-sensitive colourimetric box with in-built LED light was constructed to maintain the consistency of the image quality for precise and accurate measurement. The Red, Green and Blue (RGB) analyses of the digital images were done to determine the linear response of the intensity of G against the concentration of the LCV-P complex. A microplate reader was also used to analyse the UV-Vis absorbance of the samples to validate the results further. Under optimum conditions, the colourimetric assay achieved a detection limit of 0.25 μM with a linear range between 0.1 and 1 μM. Thus, the proposed colourimetric assay was highly sensitive and selective towards phosphate in natural and drinking water samples.

Downloads

Download data is not yet available.

References

Lawal A. T., Adeloju S. B. - Polypyrrole based amperometric and potentiometric phosphate biosensors: A comparative study B, Biosens. Bioelectron (2013). https://doi.org/10.1016/j.bios.2012.08.012. DOI: https://doi.org/10.1016/j.bios.2012.08.012

Berchmans S., Issa T. B., Singh P. - Determination of inorganic phosphate by electroanalytical methods: A review, Anal. Chim. Acta (2012). https://doi.org/10.1016/ j.aca.2012.03.060.

Ritz E., Hahn K., Ketteler M., Kuhlmann M. K., Mann J. - Phosphate additives in food--a health risk., Dtsch. Arztebl. Int. (2012). https://doi.org/10.3238/arztebl.2012.0049. DOI: https://doi.org/10.3238/arztebl.2012.0049

Shelton E. M., Emerson R. L. - Specification of Color on Dyed Fabrics by Spectroanalysis, Ind. Eng. Chem. - Anal. Ed., 1932. https://doi.org/10.1021/ac50079a002. DOI: https://doi.org/10.1021/ac50079a002

Ganesh S., Khan F., Ahmed M. K., Velavendan P., Pandey N. K., Kamachi Mudali U. - Spectrophotometric determination of trace amounts of phosphate in water and soil, Water Sci. Technol. (2012). https://doi.org/10.2166/wst.2012.468. DOI: https://doi.org/10.2166/wst.2012.468

Kjær H. A., Vallelonga P., Svensson A., Kristensen M. E. L., Tibuleac C., Bigler M. - Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores, Environ. Sci. Technol. (2013). https://doi.org/10.1021/es402274z. DOI: https://doi.org/10.1021/es402274z

Liu W., Du Z., Qian Y., Li F. - A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles, Sensors Actuators, B Chem. (2013). https://doi.org/10.1016/j.snb.2012.10.074. DOI: https://doi.org/10.1016/j.snb.2012.10.074

Jayawardane B. M., McKelvie I. D., Kolev S. D. - A paper-based device for measurement of reactive phosphate in water, Talanta. (2012). https://doi.org/10.1016/j. talanta.2012.08.021. DOI: https://doi.org/10.1016/j.talanta.2012.08.021

Racicot J. M., Mako T. L., Olivelli A., Levine M. - A paper-based device for ultrasensitive, colorimetric phosphate detection in seawater, Sensors (Switzerland) (2020). https://doi.org/10.3390/s20102766. DOI: https://doi.org/10.3390/s20102766

Felgentreu L., Nausch G., Bitschofsky F., Nausch M., Schulz-Bull D. - Colorimetric chemical differentiation and detection of phosphorus in eutrophic and high particulate waters: Advantages of a new monitoring approach, Front. Mar. Sci. (2018). https://doi.org/10.3389/fmars.2018.00212. DOI: https://doi.org/10.3389/fmars.2018.00212

Phouthavong V., Manakasettharn S., Viboonratanasri D., Buajarern S., Prompinit P., Sereenonchai K. - Colorimetric determination of trace orthophosphate in water by using C18-functionalized silica coated magnetite, Sci. Rep. (2021). https://doi.org/10.1038/ s41598-021-02516-4. DOI: https://doi.org/10.1038/s41598-021-02516-4

Chen Y. C., Lo K. M., Wang Y. X., Chiu T. C., Hu C. C. - A sensitive colorimetric probe for detection of the phosphate ion, Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-78261-x. DOI: https://doi.org/10.1038/s41598-020-78261-x

Heidari-Bafroui H., Charbaji A., Anagnostopoulos C., Faghri M. - A Colorimetric Dip Strip Assay for Detection of Low Concentrations of Phosphate in Seawater, Sensors 21 (2021). https://doi.org/10.3390/s21093125. DOI: https://doi.org/10.3390/s21093125

Sharp D. B., Allman-Farinelli M. - Feasibility and validity of mobile phones to assess dietary intake, Nutrition (2014). https://doi.org/10.1016/j.nut.2014.02.020. DOI: https://doi.org/10.1016/j.nut.2014.02.020

García A., Erenas M. M., Marinetto E. D., Abad C. A., De Orbe-Paya I., Palma A. J., Capitán-Vallvey L. F. - Mobile phone platform as portable chemical analyzer, Sensors Actuators, B Chem. (2011). https://doi.org/10.1016/j.snb.2011.04.045. DOI: https://doi.org/10.1016/j.snb.2011.04.045

Hossain M. A., Canning J., Ast S., Rutledge P. J., Jamalipour A. - Early warning smartphone diagnostics for water security and analysis using real-time pH mapping, Photonic Sensors (2015). https://doi.org/10.1007/s13320-015-0256-x. DOI: https://doi.org/10.1007/s13320-015-0256-x

de Carvalho Oliveira G., Machado C. C. S., Inácio D. K., da Silveira Petruci J. F., Silva S. G. - RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples, Talanta (2022). https://doi.org/10.1016/ j.talanta.2022.123244. DOI: https://doi.org/10.1016/j.talanta.2022.123244

Murphy J., Riley J. P. - A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta (1962). https://doi.org/10.1016/S0003-2670(00)88444-5. DOI: https://doi.org/10.1016/S0003-2670(00)88444-5

Miyamoto S., Sano S., Takahashi K., Jikihara T. - Method for colorimetric detection of double-stranded nucleic acid using leuco triphenylmethane dyes, Anal. Biochem (2015). https://doi.org/10.1016/j.ab.2014.12.016. DOI: https://doi.org/10.1016/j.ab.2014.12.016

Agrawal O., Sunita G., Gupta V. K. - A sensitive colorimetric method for the determination of arsenic in environmental and biological samples, J. Chinese Chem. Soc. (1999). https://doi.org/10.1002/jccs.199900090. DOI: https://doi.org/10.1002/jccs.199900090

Farrugia K. J., NicDaéid N., Savage K. A., Bandey H. - Chemical enhancement of footwear impressions in blood deposited on fabric - Evaluating the use of alginate casting materials followed by chemical enhancement, Sci. Justice (2010). https://doi.org/ 10.1016/j.scijus.2010.06.006. DOI: https://doi.org/10.1016/j.scijus.2010.06.006

Denman S., Jameel S., Hay J., Sugden J. K. - Photostability of crystal violet (CI 42555), Dye. Pigment (1996). https://doi.org/10.1016/0143-7208(95)00067-4. DOI: https://doi.org/10.1016/0143-7208(95)00067-4

Choodum A., Parabun K., Klawach N., Daeid N. N., Kanatharana P., Wongniramaikul W. - Real time quantitative colourimetric test for methamphetamine detection using digital and mobile phone technology, Forensic Sci. Int. (2014). https://doi.org/10.1016/ j.forsciint.2013.11.018.

APHA - Standard Methods for the Examination of Water and Wastewater, Stand. Methods, 2005. https://doi.org/ISBN 9780875532356.

Moore J. W., Stanitski C. L., Jurs P. C. - Chemistry: The molecular science, J. Chem. Educ. (2001). https://doi.org/10.1021/ed078p1598. DOI: https://doi.org/10.1021/ed078p1598

Irshad M. A., Humayoun M. A., Al-Hussain S. A., Nawaz R., Arshad M., Irfan A., Zaki M. E. A. - Green and Eco-Friendly Treatment of Textile Wastewater by Using Azadirachta indica Leaf Extract Combined with a Silver Nitrate Solution, Sustain (2023). https://doi.org/10.3390/su15010081. DOI: https://doi.org/10.3390/su15010081

Lewis G. N. - Isomers of Crystal Violet Ion. Their Absorption and Re-emission of Light, J. Am. Chem. Soc. (1942). https://doi.org/10.1021/ja01260a009. DOI: https://doi.org/10.1021/ja01260a009

Adams E. Q., Rosenstbin L. - The color and ionization of crystal-violet, J. Am. Chem. Soc. (1914). https://doi.org/10.1021/ja02184a014. DOI: https://doi.org/10.1021/ja02184a014

Bacq Z. M. - Fundamentals of biochemical pharmacology, Biochem. Pharmacol. (1971). https://doi.org/10.1016/0006-2952(71)90332-7. DOI: https://doi.org/10.1016/0006-2952(71)90332-7

The IUPAC Compendium of Chemical Terminology, 2019. https://doi.org/10.1351/goldbook. DOI: https://doi.org/10.1351/goldbook

Rowlands A. - Physics of digital photography, 2017. https://doi.org/10.1088/978-0-7503-1242-4. DOI: https://doi.org/10.1088/978-0-7503-1242-4

Wieczorek D., Żyszka-Haberecht B., Kafka A., Lipok J. - Determination of phosphorus compounds in plant tissues: from colourimetry to advanced instrumental analytical chemistry, Plant Methods (2022). https://doi.org/10.1186/s13007-022-00854-6. DOI: https://doi.org/10.1186/s13007-022-00854-6

Beran J. A. - Laboratory manual for principles of general chemistry, John Wiley, 2011.

Chemistry: Inorganic Qualitative Analysis in the Laboratory, 1980. https://doi.org/ 10.1016/b978-0-12-503354-1.x5001-8.

Gooddy D. C., Ascott M. J., Lapworth D. J., Ward R. S., Jarvie H. P., Bowes M. J., Tipping E., Dils R., Surridge B. W. - Mains water leakage: Implications for phosphorus source apportionment and policy responses in catchments, Sci. Total Environ. (2017). https://doi.org/10.1016/j.scitotenv.2016.11.038. DOI: https://doi.org/10.1016/j.scitotenv.2016.11.038

Edition F. - Guidelines for Drinking-water Quality, World Health, 2011. https://doi.org/ 10.1016/S1462-0758(00)00006-6.

Gadgil A. - Drinking water in developing countries, Annu. Rev. Energy Environ, 1998. https://doi.org/10.1146/annurev.energy.23.1.253. DOI: https://doi.org/10.1146/annurev.energy.23.1.253

Rosellynn M., Enguito C., Dispo A. J., Jumawan K., Mahinay C., Garvan E. J., Unsang D. K., Rubio L., Caguisa E., Permano A., Garvan J. - Analysis of Heavy Metals in Seawater Samples Collected from the Port of Ozamiz, Philippines, Print) J. Multidiscip. Stud., 2018.

Li Y., Huang T., Ma W. - Correlation analysis of rainstorm runoff and density current in a canyon-shaped source water reservoir: Implications for reservoir optimal operation, Water (Switzerland), 2018. https://doi.org/10.3390/w10040447. DOI: https://doi.org/10.3390/w10040447

Coppin P., Author C., Jonckheere I., Nackaerts K., Muys B., Lambin E. - International Journal of Remote Sensing Review ArticleDigital change detection methods in ecosystem monitoring: a review Digital change detection methods in ecosystem monitoring: a review, Taylor Fr., 2010.

Downloads

Published

21-08-2023

How to Cite

[1]
M. U. Ahmed and F. Arshad, “A colorimetric assay with leuco crystal violet for the detection of inorganic phosphate in water”, Vietnam J. Sci. Technol., vol. 61, no. 4, pp. 640–655, Aug. 2023.

Issue

Section

Materials