Bootstrap Methods for Estimating the Confidence Interval for the Parameter of Zero-Truncated Poisson-Garima Distribution and Their Application

Wararit Panichkitkosolkul, Chainarong Kesamoon, Sirichan Vesarachasart
Author affiliations

Authors

  • Wararit Panichkitkosolkul Thammasat University Research Unit in Mathematical Sciences and Applications, Pathum Thani, 12120, Thailand
  • Chainarong Kesamoon Department of Mathematics and Statistics, Thammasat University, Klong Luang, Pathumthani 12121 Thailand
  • Sirichan Vesarachasart Department of Mathematics and Statistics, Thammasat University, Klong Luang, Pathumthani 12121 Thailand

DOI:

https://doi.org/10.15625/2525-2518/18056

Abstract

The zero-truncated count data are of primary interest in several areas such as biological science, medical science, demography, ecology, etc. Recently, the zero-truncated Poisson-Garima distribution has been proposed for such data. However, the confidence interval of its parameter has not yet been examined. In this paper, confidence interval estimation based on percentile, simple, biased-corrected and accelerated bootstrap methods, as well as the bootstrap-t interval, was examined in terms of coverage probability and average length via Monte Carlo simulation. The results indicate that attaining the nominal confidence level using the bootstrap methods was not possible for small sample sizes regardless of the other settings. Moreover, when the sample size was large, the performances of the methods were not substantially different. Overall, it is observed that the bias-corrected and accelerated bootstrap methods outperformed the others, even for small sample sizes. Lastly, the bootstrap methods were used to calculate the confidence interval for the zero-truncated Poisson-Garima parameter via two numerical examples, the results of which match those from the simulation study.

 

Downloads

Download data is not yet available.

References

1. Kissell R., Poserina J. - Optimal sports math, statistics, and fantasy, Academic Press, London, 2017.

2. Andrew F. S., Michael R. W. - Practical business statistics, Academic Press, London, 2022.

3. Montgomery D. C., Runger G. C. - Applied statistics and probability for engineers, John Wiley & Sons, Noida, 2003.

4. Sangnawakij P. - Confidence interval for the parameter of the zero-truncated Poisson distribution, J. Appl. Sci. 20 (2021) 13-22.

5. Hougaard P., Lee M. L. T., Whitmore G. A. - Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics 53 (1997) 1225-1238.

6. McElduff F. C. - Models for discrete epidemiological and clinical data, Ph.D. dissertation, University College London, 2012.

7. Ong S. H., Low Y. C., Toh K. K. - Recent developments in mixed Poisson distributions, ASM Sci. J. (2021) https://doi.org/10.32802/asmscj.2020.464.

8. Tharshan R., Wijekoon P. - A new mixed Poisson distribution for over-dispersed count data: Theory and applications, Reliab.: Theory Appl. 17 (2022) 33-51.

9. Shanker R. - The discrete Poisson-Garima distribution, Biom. Biostat. Int. J. 5 (2017) 1-7.

10. Shanker R. - Garima distribution and its application to model behavioral science data, Biom. Biostat. Int. 4 (2016) 1-9.

11. Sankaran M. - The discrete Poisson-Lindley distribution, Biometrics 26 (1970) 145-149.

12. Lindley D. V. - Fiducial distributions and Bayes’ theorem, J. R. Stat. Soc. B. 20 (1958) 102-107.

13. Shanker R. - Akash distribution and its applications, Int. J. Stat. Appl. 4 (2015b) 65-75.

14. Shanker R. - Aradhana distribution and its applications, Int. J. Stat. Appl. 6 (2016a) 23-34.

15. Shanker R. - Sujatha distribution and its applications, Stat. Transit. 17 (2016c) 1-20.

16. David F., Johnson N. - The truncated Poisson, Biometrics 8 (1952) 275-285.

17. Hussain T. - A zero truncated discrete distribution: Theory and applications to count data, Pak. J. Stat. Oper. Res. 16 (2020) 167-190.

18. Ghitany M. E., Al-Mutairi D. K., Nadarajah S. - Zero-truncated Poisson-Lindley distribution and its application, Math. Comput. Simul. 79 (2008) 279-287.

19. Shanker R., Hagos F. - Zero-truncated Poisson-Sujatha distribution with applications, J. Ethiopian Stat. Assoc. 24 (2015) 55-63.

20. Shanker R. - Zero-truncated Poisson-Akash distribution and its applications, Am. J. Math. Stat. 7 (2017) 227-236.

21. Shanker R., Shukla K. K. - Zero-truncated Poisson-Garima distribution and its applications, Biostat. Biom. 3 (2017) 1-6.

22. Tan S. H., Tan S. B. - The correct interpretation of confidence intervals, Proceedings of Singapore Healthcare 19 (2010) 276-278.

23. Wood M. - Statistical inference using bootstrap confidence intervals, Signif. 1 (2004) 180-182.

24. Chernick M. R., LaBudde R. A. - An introduction to bootstrap methods to R, John Wiley & Sons, New York, 2014.

25. Henningsen A., Toomet O. - maxLik: A package for maximum likelihood estimation in R, Comput. Stat. 26 (2011) 443-458.

26. Ihaka R., Gentleman R. - R: A language for data analysis and graphics, J. Comput. Graph. Stat. 5 (1996) 299-314.

27. Flowers-Cano R. S., Ortiz-Gómez R., León-Jiménez J. E., López Rivera R., Perera Cruz L. A. - Comparison of bootstrap confidence intervals using Monte Carlo simulations, Water 10 (2018) 166, https://doi.org/10.3390/w.10020166.

28. Van den Boogaard H. F. P., Hall M. J. - The construction of confidence intervals for frequency analysis using resampling techniques: A supplementary note, Hydrol. Earth Syst. Sci. 8 (2004) 1174-1178.

29. Meeker W. Q., Hahn G. J., Escobar L. A. - Statistical intervals: A guide for practitioners and researchers, John Wiley and Sons, New York, 2017.

30. Efron B. - The Jackknife, the bootstrap, and other resampling plans, in CBMS-NSF Regional Conference Series in Applied Mathematics, Monograph 38, SIAM, Philadelphia, 1982.

31. Efron B., Tibshirani R. J. - An introduction to the bootstrap, Chapman and Hall, New York, 1993.

32. Efron B. - Better bootstrap confidence intervals, J. Am. Stat. Assoc. 82 (1987) 171-185.

33. Shanker R. Fesshaye H., Selvaraj S., Yemane A. - On zero-truncation of Poisson and Poisson-Lindley distributions and their applications, Biom. Biostat. Int. J. 2 (2015) 168-181.

34. Turhan N. S. - Karl Pearson’s chi-square tests, Educ. Res. Rev. 15 (2020) 575-580.

35. Garman P. - The European red mites in Connecticut apple orchards, Connecticut. Agri. Exper. Station. Bull. 252 (1923) 103-125.

Downloads

Published

23-12-2024

How to Cite

[1]
W. Panichkitkosolkul, C. Kesamoon, and S. Vesarachasart, “Bootstrap Methods for Estimating the Confidence Interval for the Parameter of Zero-Truncated Poisson-Garima Distribution and Their Application”, Vietnam J. Sci. Technol., vol. 62, no. 6, pp. 1173–1184, Dec. 2024.

Issue

Section

Environment