Synthesis and electrochemical properties of -Fe2O3 particles for energy storage devices

Bui Thi Hang, Tran Van Dang
Author affiliations

Authors

  • Bui Thi Hang International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1 Dai Co Viet Road, Hanoi City, Vietnam
  • Tran Van Dang International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1 Dai Co Viet Road, Hanoi City, Vietnam

DOI:

https://doi.org/10.15625/2525-2518/18035

Keywords:

α-Fe2O3 particles, Fe2O3/C composite electrode, hydrothermal method, iron-based battery

Abstract

In this study, we fabricated α-Fe2O3 materials via a facile hydrothermal route to use as the active material for iron-based battery anode. The particle size of α-Fe2O3 is in a range of a few hundreds of nanometers to a few micrometers.  The structural characteristics and particle size of the synthesized iron oxides were studied via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical behavior of iron oxide electrode was investigated by cyclic voltammetry (CV). The distribution of iron species was observed by Energy dispersive X-ray spectroscopy (EDS) measurement. Carbon was used as additive to improve the conductivity of α-Fe2O3/C composite electrode. The electrochemical measurements revealed that the prepared α-Fe2O3 particles provided the good cyclability. The EDS showed that iron species were dispersed on the carbon surface during discharge-discharge through the electrochemical dissolution-deposition process of iron.

Downloads

Download data is not yet available.

References

Černý J., Micka K. -, Voltammetric study of an iron electrode in alkaline electrolytes, J. Power Sources. 25 (1989) 111-–122. doi:10.1016/0378-7753(89)85003-7.

Posada J. O. G., Hall P. J. -, Controlling hydrogen evolution on iron electrodes, Int. J. Hydrogen Energy. 41 (2016) 20807-–20817. doi:10.1016/j.ijhydene.2016.04.123.

Gil Posada J. O., Hall P. J. -, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, J. Power Sources. 268 (2014) 810-–815. doi:10.1016/j.jpowsour. 2014.06.126.

Yang B., Malkhandi S., Manohar A. K., Surya Prakash G. K., Narayanan S. R. -, Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage, Energy Environ. Sci. 7 (2014) 2753. doi:10.1039/C4EE01454E.

Shangguan E., F. Li, Li J., Chang Z., Li Q., Yuan X. -Z., Wang H. -, FeS/C composite as high-performance anode material for alkaline nickel–iron rechargeable batteries, J. Power Sources. 291 (2015) 29-–39. doi:10.1016/j.jpowsour.2015.05.019.

Narayanan S. R., Prakash G. K. S., Manohar A., Yang B., Malkhandi S., Kindler A. -, Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage, Solid State Ionics. 216 (2012) 105-–109. doi:10.1016/j.ssi.2011.12.002.

Sundar Rajan A., Ravikumar M. K., Priolkar K.R ., Sampath S., Shukla A. K. -, Carbonyl-Iron Electrodes for Rechargeable-Iron, Electrochem. Energy Technol. 1 (2014) 2-–9. doi:10.1515/eetech-2014-0002.

Malkhandi S., Yang B., Manohar A. K., Prakash G. K. S., Narayanan S. R. -, Self-Assembled Monolayers of n -Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes, J. Am. Chem. Soc. 135 (2013) 347-–353. doi:10.1021/ja3095119.

Chakkaravarthy C., Periasamy P., Jegannathan S., Vasu K. I. -, The nickel/iron battery, J. Power Sources. 35 (1991) 21-–35. doi:10.1016/0378-7753(91)80002-F.

Micka K., Zábranský Z. -, Study of iron oxide electrodes in an alkaline electrolyte, J. Power Sources. 19 (1987) 315-–323. doi:10.1016/0378-7753(87)87007-6.

Jayalakshmi N., Muralidharan V. S. -, Electrochemical behaviour of iron oxide electrodes in alkali solutions, J. Power Sources. 32 (1990) 277-–286. doi:10.1016/0378-7753(90)87021-I.

Caldas C. A., Lopes M. C., Carlos I. A. -, The role of FeS and (NH4)2CO3 additives on the pressed type Fe electrode, J. Power Sources. 74 (1998) 108–-112. doi:10.1016/S0378-7753(98)00039-1.

Dı́ez-Pérez I., Gorostiza P., Sanz F. -, Direct Evidence of the Electronic Conduction of the Passive Film on Iron by EC-STM, J. Electrochem. Soc. 150 (2003) B348. doi:10.1149/1.1580823.

De Koninck M., Bélanger D. -, The electrochemical generation of ferrate at pressed iron powder electrode: comparison with a foil electrode, Electrochim. Acta. 48 (2003) 1435-–1442. doi:10.1016/S0013-4686(03)00021-5.

Ravikumar M. K., Rajan A. S., Sampath S., Priolkar K.R., Shukla A. K. -, In Situ Crystallographic Probing on Ameliorating Effect of Sulfide Additives and Carbon Grafting in Iron Electrodes, J. Electrochem. Soc. 162 (2015) A2339-–A2350. doi:10.1149/2.0721512jes.

Figueredo-Rodríguez H. A., McKerracher R. D., Insausti M., Luis A. G., de Leόn C. P., Alegre C., Baglio V., Aricò A. S., Walsh F. C. -, A Rechargeable, Aqueous Iron Air Battery with Nanostructured Electrodes Capable of High Energy Density Operation, J. Electrochem. Soc. 164 (2017) A1148-–A1157. doi:10.1149/2.0711706jes.

Hayashi K., Wada Y., Maeda Y., Suzuki T., Sakamoto H., Tan W. K., Kawamura G., Muto H., Matsuda A. -, Electrochemical Performance of Sintered Porous Negative Electrodes Fabricated with Atomized Powders for Iron-Based Alkaline Rechargeable Batteries, J. Electrochem. Soc. 164 (2017) A2049-–A2055. doi:10.1149/2.1311709jes.

Wu M. C., Zhao T. S., Tan P., Jiang H. R., Zhu X. B. -, Cost-effective carbon supported Fe2O3 nanoparticles as an efficient catalyst for non-aqueous lithium-oxygen batteries, Electrochim. Acta. 211 (2016) 545-–551. doi:10.1016/j.electacta.2016.05.147.

Li Y., Lu J. -, Metal-Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?, ACS Energy Lett. 2 (2017). doi:10.1021/acsenergylett. 7b00119.

Jiang W., Liang F., Wang J., Su L., Wu Y., Wang L. -, Enhanced electrochemical performances of FeOx –graphene nanocomposites as anode materials for alkaline nickel–iron batteries, RSC Adv. 4 (2014) 15394-–15399. doi:10.1039/C4RA00018H.

Hang B. T., Eashira M., Watanabe I., Okada S., Yamaki J. I., Yoon S. H., Mochida I. -, The effect of carbon species on the properties of Fe/C composite for metal-air battery anode, J. Power Sources. 143 (2005) 256-–264. doi:10.1016/j.jpowsour.2004.11.044.

Hang B. T., Watanabe T., Egashira M., Watanabe I., Okada S., Yamaki J. -, The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode, J. Power Sources. 155 (2006) 461-–469. doi:10.1016/j.jpowsour.2005.04.010.

Hang B. T., Yoon S. H., Okada S., Yamaki J. -, Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes, J. Power Sources. 168 (2007) 522-–532. doi:10.1016/j.jpowsour.2007.02.067.

Kalaignan G. P., Muralidharan V. S., Vasu K. I. -, Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions, J. Appl. Electrochem. 17 (1987) 1083–-1092. doi:10.1007/BF01024374.

Downloads

Published

30-10-2023

How to Cite

[1]
Bui Thi Hang and Tran Van Dang, “Synthesis and electrochemical properties of -Fe2O3 particles for energy storage devices”, Vietnam J. Sci. Technol., vol. 62, no. 1, pp. 92–101, Oct. 2023.

Issue

Section

Materials