Electromagnetic heating using nanomaterials and various potentials applications
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18032Keywords:
electro-magnetic heating, Al2O3 nanoparticles, cancer hyperthermia, nanocomposite processing, nanoscale temperature gradientAbstract
Electromagnetic heating (EMH) is a process of adsorbing electromagnetic wave energy by a material and converting it into heat. Nanomaterials can serve as novel susceptors in EMH due to the fine size that made them become heat sources from inside, as well as because of new heating mechanisms such as Neel relaxation by magnetic nanoparticles (MNPs) and localized surface plasmon resonance by metallic nanostructures. This review firstly introduces general theoretical & experimental aspects of the alternating electric field (AEF)- and magnetic field (AMF)-stimulated heating. Next, attempts to fabricate MNPs and photothermal nanoparticles (PNPs) of improved heating efficiencies have been reviewed and those with the highest specific loss power have been summarized. Finally, potential applications, including cancer treatment using AMF@MNP hyperthermia and AEF@PNP hyperthermia, AMF@MNP- and AEF@PNP- triggered drug release, as well as nanocomposite processing were particularly highlighted. Besides, other exotic applications such as toxic solvent desorption from adsorbent materials, thermophoresis in precise membrane melting as well as optical signal processing in heat-assisted magnetic memory technology were also outlined. The various applications were attempted to represent into 2 groups: biomedicine, and materials processing; which are composed of localized/targeted and volumetric heating type.
Downloads
References
Hossan M. R., and Dutta P. - Effects of temperature dependent properties in electromagnetic heating, J. Heat and Mass Transfer. 55 (2012) 3412-3422. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.072
Habash R. W. Y., Bansal R., Krewski D., and Alhafid H. T. - Thermal therapy, part 1: an introduction to thermal therapy, Crit. Rev. Biomed. Eng. 34 (6) (2006) 459-489. DOI: https://doi.org/10.1615/CritRevBiomedEng.v34.i6.20
Bayerl T., Duhovic M., Mitschang P., and Bhattacharyya D. - The heating of polymer composites by electromagnetic induction - A review, Compos. A: Appl. Sci. Manuf. 57 (2014) 27-40. DOI: https://doi.org/10.1016/j.compositesa.2013.10.024
Vashisth A., Upama S. T., Anas M., Oh J.-H., Patil N., and Green M. J. - Radio frequency heating and material processing using carbon susceptors, Nanoscale Adv. 3 (2021) 5255-5264. DOI: https://doi.org/10.1039/D1NA00217A
Fink B. K., Yarlagadda S., Xiao J. Q., Laverty G. H., and Gillespie Jr J. W. - Functional Nanostructures for Induction Heating: A Review of Literature and Recommendations for Research, Army Research Laboratory (2000) ARL-TR-2365.
Govorov A. O., and Richardson H. H. - Generating heat with metal nanoparticles, Nano Today. 2 (2007) 30-38. DOI: https://doi.org/10.1016/S1748-0132(07)70017-8
Baffou G., and Quidant R. - Thermo-plasmonics: using metallic nanostructures as nano-sources of heat, Laser Photonics Rev. 7 (2013) 171-187. DOI: https://doi.org/10.1002/lpor.201200003
Sharma S. K., Shrivastava N., Rossi F., and Thanh N. T. K. - Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment, Nano Today. 29 (2019) 100795. DOI: https://doi.org/10.1016/j.nantod.2019.100795
Hedayatnasab Z., Abnisa F., and Daud W. M. A. W. - Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application, Mater. Des. 123 (2017) 174-196. DOI: https://doi.org/10.1016/j.matdes.2017.03.036
Jauffred L., Samadi A., Klingberg H., Bendix P. M., and Oddershede L. B. - Plasmonic heating of nanostructures, Chem. Rev. 119 (2019) 8087-8130. DOI: https://doi.org/10.1021/acs.chemrev.8b00738
Jaque D., Maestro L. M., Del Rosal B., Haro-Gonzalez P., Benayas A., Plaza J. L., Rodriguez E. M., and Sole J. G. - Nanoparticles for photothermal therapies, Nanoscale. 6 (2014) 9494-9530. DOI: https://doi.org/10.1039/C4NR00708E
Pankhurst Q. A., Thanh N. T. K., Jones S. K., and Dobson J. - Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. 42 (2009) 224001(15). DOI: https://doi.org/10.1088/0022-3727/42/22/224001
Baffou G., Cichos F., and Quidant R. - Applications and challenges of thermoplasmonics, Nat. Mater. 19 (2020) 946-958. DOI: https://doi.org/10.1038/s41563-020-0740-6
Etheridge M. L., Xu Y., Rott L., Choi J., Glasmacher B., and Bischof J. C. - RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials, Technology. 2 (2014) 229-242. DOI: https://doi.org/10.1142/S2339547814500204
Bello F., Sanvito S., Hess O., and Donegan J. F. - Shaping and storing magnetic data using pulsed plasmonic nanoheating and spin-transfer torque, ACS Photonics. 6 (2019) 1524-1532. DOI: https://doi.org/10.1021/acsphotonics.9b00295
Rosensweig R. E. - Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater. 252 (2002) 370-374. DOI: https://doi.org/10.1016/S0304-8853(02)00706-0
Hergt R., Dutz S., Müller R., and Zeisberger M. - Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Condens. Matter Phys. 18 (2006) S2919-S2934. DOI: https://doi.org/10.1088/0953-8984/18/38/S26
Suto M., Hirota Y., Mamiya H., Fujita A., Kasuya R., Tohji K., and Jeyadevan B. - Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia, J. Magn. Magn. Mater. 321 (2009) 1493-1496. DOI: https://doi.org/10.1016/j.jmmm.2009.02.070
Deatsch A. E., and Evans B. A. - Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. Magn. Mater. 354 (2014) 163-172. DOI: https://doi.org/10.1016/j.jmmm.2013.11.006
Phong P. T., Nguyen L. H., Lee I.-J., and Phuc N. X. - Computer simulations of contributions of Néel and Brown relaxation to specific loss power of magnetic fluids in hyperthermia, J. Electron. Mater. 46 (2017) 2393-2405. DOI: https://doi.org/10.1007/s11664-017-5302-6
Fink B. K., McCullough R. L., and Gillespie Jr J. W. - A local theory of heating in cross-ply carbon fiber thermoplastic composites by magnetic induction, Polymer Eng. & Science. 32 (1992) 357-369. DOI: https://doi.org/10.1002/pen.760320509
Vazquez E., and Prato M. - Carbon nanotubes and microwaves: interactions, responses, and applications, ACS nano. 3 (2009) 3819-3824. DOI: https://doi.org/10.1021/nn901604j
Anas M., Zhao Y., Saed M. A., Ziegler K. J., and Green M. J. - Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes, Nanoscale. 11 (2019) 9617-9625. DOI: https://doi.org/10.1039/C9NR01600G
Gerringer J. C., Moran A. G., Habib T., Pospisil M. J., Oh J. H., Teipel B. R., and Green M. J. - Radio frequency heating of laser-induced graphene on polymer surfaces for rapid welding, ACS Appl. Nano Mater. 2 (2019) 7032-7042. DOI: https://doi.org/10.1021/acsanm.9b01536
Hicks V. K., Anas M., Porter E. B., and Green M. J. - High-throughput screening of printed carbon nanotube circuits using radio frequency heating, Carbon. 152 (2019) 444-450. DOI: https://doi.org/10.1016/j.carbon.2019.06.039
Vashisth A., Healey R. E., Pospisil M. J., Oh J. H., and Green M. J. - Continuous processing of pre-pregs using radio frequency heating, Compos. Sci. Technol. 195 (2020) 108211. DOI: https://doi.org/10.1016/j.compscitech.2020.108211
Linh P. H., Van Thach P., Tuan N. A., Thuan N. C., and Phuc N. X. - Magnetic fluid based on Fe3O4 nanoparticles: Preparation and hyperthermia application, Journal of Physics, Conference Series, IOP Publishing 187 (2009) 1-5. DOI: https://doi.org/10.1088/1742-6596/187/1/012069
Fortin J. P., Wilhelm C., Servais J., Ménager C., Bacri J. C., and Gazeau F. - Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc. 129 (2007) 2628-2635. DOI: https://doi.org/10.1021/ja067457e
Lavorato G. C., Das R., Masa J. A., Phan M.-H., and Srikanth H. - Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications, Nanoscale Adv. 3 (2021) 867-888. DOI: https://doi.org/10.1039/D0NA00828A
Gneveckow U., Jordan A., Scholz R., Brüß V., Waldöfner N., Ricke J., Feussner A., Hildebrandt B., Rau B., and Wust P. - Description and characterization of the novel hyperthermia‐and thermoablation‐system for clinical magnetic fluid hyperthermia, Med. phys. 31 (2004) 1444-1451. DOI: https://doi.org/10.1118/1.1748629
Sweeney C. B., Moran A. G., Gruener J. T., Strasser A. M., Pospisil M. J., Saed M. A., and Green M. J. - Radio frequency heating of carbon nanotube composite materials, ACS Appl. Mat. Interfaces. 10 (2018) 27252-27259. DOI: https://doi.org/10.1021/acsami.8b06268
Gonzales-Weimuller M., Zeisberger M., and Krishnan K. M. - Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia, J. Magn. Magn. Mater. 321 (2009) 1947-1950. DOI: https://doi.org/10.1016/j.jmmm.2008.12.017
Gonzalez-Fernandez M. A., Torres T. E., Andrés-Vergés M., Costo R., De la Presa P., Serna C. J., Morales M. P., Marquina C., Ibarra M. R., and Goya G. F. - Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties, J. Solid State Chem. 182 (2009) 2779-2784. DOI: https://doi.org/10.1016/j.jssc.2009.07.047
Gavilán H., Brollo M. E. F., Gutiérrez L., Veintemillas-Verdaguer S., and del Puerto Morales M. - Clinical Applications of Magnetic Nanoparticles In: Controlling the size and shape of uniform magnetic iron oxide nanoparticles for biomedical applications by Thanh N. T. K., CRC Press, New York, USA, 2018. DOI: https://doi.org/10.1201/9781315168258-1
Khurshid H., Alonso J., Nemati Z., Phan M. H., Mukherjee P., Fdez-Gubieda M. L., Barandiarán J. M., and Srikanth H. - Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles, J. Appl. Phys. 117 (2015) 17A337. DOI: https://doi.org/10.1063/1.4919250
(a) Lee J. H., Jang J. T., Choi J. S., Moon S. H., Noh S. H., Kim J. W., Kim J. G., Kim I. S., Park K. I., and Cheon J. - Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6 (2011) 418-422; (b) Noh S. H., Na W., Jang J. H., Lee J. H., Lee E. J., Moon S. H., Lim Y., Shin J. S., and Cheon J. - Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis, Nano Lett. 12 (2012) 3716-3721.
Martinez-Boubeta C., Simeonidis K., Makridis A., Angelakeris M., Iglesias O., Guardia P., Cabot A., Yedra L., Estradé S., and Peiró F. - Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3 (2013) 1-8. DOI: https://doi.org/10.1038/srep01652
Yang M. D., Ho C. H., Ruta S., Chantrell R., Krycka K., Hovorka O., Chen F. R., Lai P. S., and Lai C. H. - Magnetic interaction of multifunctional core-shell nanoparticles for highly effective theranostics, Adv. Mater. 30 (2018) 1802444. DOI: https://doi.org/10.1002/adma.201802444
Mohapatra J., Xing M., Beatty J., Elkins J., Seda T., Mishra S. R., and Liu J. P. - Enhancing the magnetic and inductive heating properties of Fe3O4 nanoparticles via morphology control, Nanotechnology. 31 (2020) 275706. DOI: https://doi.org/10.1088/1361-6528/ab84a3
Guardia P., Corato R. D., Lartigue L., Wilhelm C., Espinosa A., Garcia-Hernandez M., Gazeau F., Manna L., and Pellegrino T. - Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment, ACS Nano. 6 (2012) 3080-3091. DOI: https://doi.org/10.1021/nn2048137
Hugounenq P., Levy M., Alloyeau D., Lartigue L., Dubois E., Cabuil V. r., Ricolleau C., Roux S., Wilhelm C., and Gazeau F. - Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia, J. Phys. Chem. C 116 (2012) 15702-15712. DOI: https://doi.org/10.1021/jp3025478
Dutz S., Hergt R., Mürbe J., Müller R., Zeisberger M., Andrä W., Töpfer J., and Bellemann M. E. - Hysteresis losses of magnetic nanoparticle powders in the single domain size range, J. Magn. Magn. Mater. 308 (2007) 305-312. DOI: https://doi.org/10.1016/j.jmmm.2006.06.005
Blanco-Andujar C., Ortega D., Southern P., Pankhurst Q., and Thanh N. - High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions, Nanoscale. 7 (2015) 1768-1775. DOI: https://doi.org/10.1039/C4NR06239F
Brezovich I. A. - Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods, Med. Phys. Monogr. 16 (1988) 82-111.
Hergt R., and Dutz S. - Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy, J. Magn. Magn. Mater. 311 (2007) 187-192. DOI: https://doi.org/10.1016/j.jmmm.2006.10.1156
Herrero de la Parte B., Rodrigo I., Gutiérrez-Basoa J., Iturrizaga Correcher S., Mar Medina C., Echevarría-Uraga J. J., Garcia J. A., Plazaola F., and García-Alonso I. - Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy, Cancers. 14 (2022) 3084. DOI: https://doi.org/10.3390/cancers14133084
Jain P. K., Huang X., El-Sayed I. H., and El-Sayed M. A. - Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. of Chem. Res. 41 (2008) 1578-1586. DOI: https://doi.org/10.1021/ar7002804
(a) Link S., and El-Sayed M. A. - Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19 (2000) 409-453; (b) Link S. and El-Sayed M.A. - Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B. 103 (1999) 4212.
Rocha U., Kumar K. U., Jacinto C., Villa I., Sanz-Rodríguez F., del Carmen Iglesias de la Cruz M., Juarranz A., Carrasco E., van Veggel F. C., and Bovero E. - Neodymium-Doped LaF3 Nanoparticles for Fluorescence Bioimaging in the Second Biological Window, Small. 10 (2014) 1141-1154. DOI: https://doi.org/10.1002/smll.201301716
Cheng L., Yang K., Chen Q., and Liu Z. - Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer, ACS nano. 6 (2012) 5605-5613. DOI: https://doi.org/10.1021/nn301539m
Maestro L. M., Haro-González P., Sánchez-Iglesias A., Liz-Marzán L. M., Garcia Sole J., and Jaque D. - Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles, Langmuir. 30 (2014) 1650-1658. DOI: https://doi.org/10.1021/la403435v
(a) Maestro L. M., Haro-Gonzalez P., del Rosal B., Ramiro J., Caamano A. J., Carrasco E., Juarranz A., Sanz-Rodriguez F., Sole J. G., and Jaque D. - Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows, Nanoscale. 203 (5) (2013) 7882-7889; (b) Robinson J. T., Tabakman S. M., Liang Y., Wang H., Sanchez Casalongue H., Vinh D., and Dai H. - Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy, J. Am. Chem. Soc. 133 (2011) 6825-6831.
Hessel C. M., Pattani V. P., Rasch M., Panthani M. G., Koo B., Tunnell J. W., and Korgel B. A. - Copper Selenide Nanocrystals for Photothermal Therapy, Nano Lett. 11 (2011) 2560-2566. DOI: https://doi.org/10.1021/nl201400z
Wawrzynczyk D., Bednarkiewicz A., Nyk M., Strek W., and Samoc M. - Neodymium (III) doped fluoride nanoparticles as non-contact optical temperature sensors, Nanoscale. 4 (2012) 6959-6961. DOI: https://doi.org/10.1039/c2nr32203j
Tikhomirov V. K., Driesen K., Rodriguez V. D., Gredin P., Mortier M., and Moshchalkov V. V. - Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles, Opt. Express. 17 (2009) 11794-11798. DOI: https://doi.org/10.1364/OE.17.011794
Espinosa A., Bugnet M., Radtke G., Neveu S., Botton G. A., Wilhelm C., and Abou-Hassan A. - Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?, Nanoscale. 7 (2015) 18872-18877. DOI: https://doi.org/10.1039/C5NR06168G
Di Corato R., Béalle G., Kolosnjaj-Tabi J., Espinosa A., Clement O., Silva A. K. A., Menager C., and Wilhelm C. - Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes, ACS Nano. 9 (2015) 2904-2916. DOI: https://doi.org/10.1021/nn506949t
Fang W., Zhang H., Wang X., Wei W., Shen Y., Yu J., Liang J., Zheng J., and Shen Y. - Facile synthesis of tunable plasmonic silver core/magnetic Fe3O4 shell nanoparticles for rapid capture and effective photothermal ablation of bacterial pathogens, New J. Chem. 41 (2017) 10155-10164. DOI: https://doi.org/10.1039/C7NJ02071F
Zhang H., Yang Z., Ju Y., Chu X., Ding Y., Huang X., Zhu K., Tang T., Su X., and Hou Y. - Galvanic Displacement Synthesis of Monodisperse Janus-and Satellite-Like Plasmonic–Magnetic Ag–Fe@ Fe3O4 Heterostructures with Reduced Cytotoxicity, Adv. Sci. 5 (2018) 1800271(9). DOI: https://doi.org/10.1002/advs.201800271
Wang D., Wang K., and Xu W. - Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion of immiscible blends, Polym. Adv. Technol. 24 (2013) 70-74. DOI: https://doi.org/10.1002/pat.3051
Milad M. M. M., Ahmad S. H., Yahya S. Y., and Tarawneh M. a. A. - Mechanical and Magnetic Properties of Thermoplastic Natural Rubber Nanocomposites Filled with Barium Ferrit, AIP Conference Proceedings 1136 (2009) 46-50. DOI: https://doi.org/10.1063/1.3160187
Vasudevan M. P., Sudeep P. M., Al-Omari I. A., Kurian P., Ajayan P. M., Narayanan T. N., and Anantharaman M. R. - Enhanced microactuation with magnetic field curing of magnetorheological elastomers based on iron–natural rubber nanocomposites, Bull. Mater. Sci. 38 (2015) 689-694. DOI: https://doi.org/10.1007/s12034-015-0919-7
Herren B., Charara M., Saha M. C., Altan M. C., and Liu Y. - Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function, Nanomaterials. 10 (2020) 233. DOI: https://doi.org/10.3390/nano10020233
Sweeney C. B., Lackey B. A., Pospisil M. J., Achee T. C., Hicks V. K., Moran A. G., Teipel B. R., Saed M. A., and Green M. J. - Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating, Sci. Adv. 3 (2017) e1700262. DOI: https://doi.org/10.1126/sciadv.1700262
Anas M., Mustafa M. M., Vashisth A., Barnes E., Saed M. A., Moores L. C., and Green M. J. - Universal patterns of radio-frequency heating in nanomaterial-loaded structures, Appl. Mat. Today. 23 (2021) 101044. DOI: https://doi.org/10.1016/j.apmt.2021.101044
Gilchrist R. K., Medal R., Shorey W. D., Hanselman R. C., Parrott J. C., and Taylor C. B. - Selective inductive heating of lymph nodes, Ann. Surg. 146 (1957) 596-606. DOI: https://doi.org/10.1097/00000658-195710000-00007
Jordan A., Wust P., Fählin H., John W., Hinz A., and Felix R. - Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia, Int. J. Hyperth. 9 (1993) 51-68. DOI: https://doi.org/10.3109/02656739309061478
Hilger I. - In vivo applications of magnetic nanoparticle hyperthermia, Int. J. Hyperth. 29 (2013) 828-834. DOI: https://doi.org/10.3109/02656736.2013.832815
Sadhukha T., Lin Niu, Wiedmann T.S., and Panyam J. - Effective elimination of cancer stem cells by magnetic hyperthermia, Molecular pharmaceutics. 10 (4) (2013) 1432-1441. DOI: https://doi.org/10.1021/mp400015b
Sadhukha T., Wiedmann T. S., and Panyam J. - Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy, Biomaterials. 34 (21) (2013) 5163-5171. DOI: https://doi.org/10.1016/j.biomaterials.2013.03.061
Hoopes P. J., Strawbridge R. R., Gibson U. J., Zeng Q., Pierce Z. E., Savellano M., Tate J. A., Ogden J.A., and Baker I. - Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment, In Thermal Treatment of Tissue: Energy Delivery and Assessment IV, Vol. 6440, pp. 174-183. SPIE, 2007. doi:10.1117/2.706302. DOI: https://doi.org/10.1117/12.706302
Lin M., Huang J., and Sha M. - Recent advances in nanosized Mn–Zn ferrite magnetic fluid hyperthermia for cancer treatment, J. Nanosci. Nanotechnol. 14 (2014) 792-802. DOI: https://doi.org/10.1166/jnn.2014.9135
Rodrigues H. F., Capistrano G., and Bakuzis A. F. - In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning, Int. J. Hyperth. 37 (2020) 76-99. DOI: https://doi.org/10.1080/02656736.2020.1800831
Thiesen B., and Jordan A. - Clinical applications of magnetic nanoparticles for hyperthermia, Int. J. Hyperth. 24 (2008) 467-474. DOI: https://doi.org/10.1080/02656730802104757
Luengo Y., Díaz-Riascos Z. V., García-Soriano D., Teran F. J., Artés-Ibáñez E. J., Ibarrola O., Somoza Á., Miranda R., Schwartz S., Abasolo I., and Salas G. - Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation, Pharmaceutics. 14 (2022) 1526. DOI: https://doi.org/10.3390/pharmaceutics14081526
Pitsillides C. M., Joe E. K., Wei X., Anderson R. R., and Lin C. P. - Selective cell targeting with light-absorbing microparticles and nanoparticles, Biophys. J. 84 (2003) 4023-4032. DOI: https://doi.org/10.1016/S0006-3495(03)75128-5
Hirsch L. R., Stafford R. J., Bankson J. A., Sershen S. R., Rivera B., Price R. E., Hazle J. D., Halas N. J., and West J. L. - Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. 100 (2003) 13549-13554. DOI: https://doi.org/10.1073/pnas.2232479100
Ali M. R. K., Ibrahim I. M., Ali H. R., Selim S. A., and El-Sayed M. A. - Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis, Int. J. Nanomed. 11 (2016) 4849. DOI: https://doi.org/10.2147/IJN.S109470
Nomura S., Morimoto Y., Tsujimoto H., Arake M., Harada M., Saitoh D., Hara I., Ozeki E., Satoh A., Takayama E., Hase K., Kishi Y., and Ueno H. - Highly reliable, targeted photothermal cancer therapy combined with thermal dosimetry using a near-infrared absorbent, Sci. Rep. 10 (2020) 9765. DOI: https://doi.org/10.1038/s41598-020-66646-x
Han H. S., and Choi K. Y. - Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications, Biomedicines. 9 (2021) 305. DOI: https://doi.org/10.3390/biomedicines9030305
Zhao L., Zhang X., Wang X., Guan X., Zhang W., and Ma J. - Recent advances in selective photothermal therapy of tumor, J. Nanotechnol. 19 (2021) 335. DOI: https://doi.org/10.1186/s12951-021-01080-3
Sun J., Zhao H., Xu W., and Jiang G.-Q. - Recent advances in photothermal therapy-based multifunctional nanoplatforms for breast cancer, Front. Chem. 10 (2022) 1024177. DOI: https://doi.org/10.3389/fchem.2022.1024177
Gannon C. J., Cherukuri P., Yakobson B. I., Cognet L., Kanzius J. S., Kittrell C., Weisman R. B., Pasquali M., Schmidt H. K., Smalley R. E., and Curley S. A. - Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field, Cancer. 110 (2007) 2654-2665. DOI: https://doi.org/10.1002/cncr.23155
Derfus A. M., von Maltzahn G., Harris T. J., Duza T., Vecchio K. S., Ruoslahti E., and Bhatia S. N. - Remotely Triggered Release from Magnetic Nanoparticles, Adv. Mater. 19 (2007) 3932-3936. DOI: https://doi.org/10.1002/adma.200700091
Brazel C. S. - Magnetothermally-responsive Nanomaterials: Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release, Phar. Res. 26 (2009) 644-656. DOI: https://doi.org/10.1007/s11095-008-9773-2
Kumar C. S. S. R., and Mohammad F. - Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. 63 (2011) 789-808. DOI: https://doi.org/10.1016/j.addr.2011.03.008
Stanley S. A., Gagner J. E., Damanpour S., Yoshida M., Dordick J. S., and Friedman J. M. - Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice, Sci. 336 (2012) 604-608. DOI: https://doi.org/10.1126/science.1216753
Moros M., Idiago-López J., Asín L., Moreno-Antolín E., Beola L., Grazú V., Fratila R. M., Gutiérrez L., and de la Fuente J. M. - Triggering antitumoural drug release and gene expression by magnetic hyperthermia, Adv. Drug Deliv. Rev. 138 (2019) 326-343. DOI: https://doi.org/10.1016/j.addr.2018.10.004
Thong P. Q., Huong L. T., Tu N. D., Nhung H.T.M., Khanh L., Manh D. H., Nam P. H., Phuc N. X., Alonso J., Qiao J., Sridhar S., Thu H. P., Phan M. H., Thanh N. T. K. - Multifunctional nanocarriers of Fe3O4@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery, Nanomedicine. 17 (2023) 1677-1693. DOI: https://doi.org/10.2217/nnm-2022-0070
Barhoumi A., Huschka R., Bardhan R., Knight M. W., and Halas N. J. - Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy, Chem. Phys. Lett. 482 (2009) 171-179. DOI: https://doi.org/10.1016/j.cplett.2009.09.076
Huschka R., Zuloaga J., Knight M. W., Brown L. V., Nordlander P., and Halas N. J. - Light-Induced Release of DNA from Gold Nanoparticles: Nanoshells and Nanorods, J. Am. Chem. Soc. 133 (2011) 12247-12255. DOI: https://doi.org/10.1021/ja204578e
Andersen T., Bahadori A., Ott D., Kyrsting A., Reihani S. N. S., and Bendix P. M. - Nanoscale phase behavior on flat and curved membranes, Nanotechnology. 25 (2014) 505101. DOI: https://doi.org/10.1088/0957-4484/25/50/505101
Urban P., Kirchner S. R., Mühlbauer C., Lohmüller T., and Feldmann J. - Reversible control of current across lipid membranes by local heating, Sci. Rep. 6 (2016) 22686. DOI: https://doi.org/10.1038/srep22686
Hernández Montoto A., Montes R., Samadi A., Gorbe M., Terrés J. M., Cao-Milán R., Aznar E., Ibañez J., Masot R., Marcos M. D., Orzáez M., Sancenón F., Oddershede L. B., and Martínez-Máñez R. - Gold Nanostars Coated with Mesoporous Silica Are Effective and Nontoxic Photothermal Agents Capable of Gate Keeping and Laser-Induced Drug Release, ACS Appl. Mater. Interface. 10 (2018) 27644-27656. DOI: https://doi.org/10.1021/acsami.8b08395
Evans S. - Electromagnetic rewarming: the effect of CPA concentration and radio source frequency on uniformity and efficiency of heating, Cryobiology. 40 (2000) 126-138. DOI: https://doi.org/10.1006/cryo.2000.2232
Eisenberg D. P., Bischof J. C., and Rabin Y. - Thermomechanical stress in cryopreservation via vitrification with nanoparticle heating as a stress-moderating effect, J. Biomech. Eng. 138 (2016) 011010. DOI: https://doi.org/10.1115/1.4032053
Manuchehrabadi N., Gao Z., Zhang J., Ring H. L., Shao Q., Liu F., McDermott M., Fok A., Rabin Y., Brockbank K. G. M., Garwood M., Haynes C. L., and Bischof J. C. - Improved tissue cryopreservation using inductive heating of magnetic nanoparticles, Sci. Transl. Med. 9 (2017) eaah4586. DOI: https://doi.org/10.1126/scitranslmed.aah4586
Cao M., Xu Y., and Dong Y. - Improving Mechanical Properties of Vitrified Umbilical Arteries with Magnetic Warming, Fluid dynamics & Materials Processing. 17 (2021) 123-139. DOI: https://doi.org/10.32604/fdmp.2021.011443
Zhan T., Liu K., Yang J., Dang H., Chen L., and Xu Y. - Fe3O4 Nanoparticles with Carboxylic Acid Functionality for Improving the Structural Integrity of Whole Vitrified Rat Kidneys, ACS Appl. Nano Mat. 4 (2021) 13552-13561. DOI: https://doi.org/10.1021/acsanm.1c03014
Sharma A., Rao J. S., Han Z., Gangwar L., Namsrai B., Gao Z., Ring H. L., Magnuson E., Etheridge M., Wowk B., Fahy G. M., Garwood M., Finger E. B., and Bischof J. C. - Vitrification and Nanowarming of Kidneys, Adv. Sci. 8 (2021) 2101691. DOI: https://doi.org/10.1002/advs.202101691
Yang Y., He J., Li Q., Gao L., Hu J., Zeng R., Qin J., Wang S. X., and Wang Q. - Self-healing of electrical damage in polymers using superparamagnetic nanoparticles, Nature Nanotech. 14 (2019) 151-155. DOI: https://doi.org/10.1038/s41565-018-0327-4
Habib T., Patil N., Zhao X., Prehn E., Anas M., Lutkenhaus J. L., Radovic M., and Green M. J. - Heating of Ti3C2Tx MXene/polymer composites in response to Radio Frequency fields, Sci. Rep. 9 (2019) 16489. DOI: https://doi.org/10.1038/s41598-019-52972-2
Gruener J. T., Vashisth A., Pospisil M. J., Camacho A. C., Oh J.-H., Sophiea D., Mastroianni S. E., Auvil T. J., and Green M. J. - Local heating and curing of carbon nanocomposite adhesives using radio frequencies, Journal of Manufacturing Processes. 58 (2020) 436-442. DOI: https://doi.org/10.1016/j.jmapro.2020.08.039
Vashisth A., Auvil T. J., Sophiea D., Mastroianni S. E., and Green M. J. - Using Radio-Frequency Fields for Local Heating and Curing of Adhesive for Bonding Metals, Adv. Eng. Mat. 23 (2021) 2100210. DOI: https://doi.org/10.1002/adem.202100210
Sosnowchik B. D., and Lin L.W. - Rapid synthesis of carbon nanotubes via inductive heating, Applied physics letters. 89 (19) (2006) 193112. DOI: https://doi.org/10.1063/1.2387942
Niether C., Faure S., Bordet A., Deseure J., Chatenet M., Carrey J., Chaudret B., Rouet A. - Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles, Nature Energy. 3 (2018) 476-483, DOI: 10.1038/ s41560-018-0132-1. DOI: https://doi.org/10.1038/s41560-018-0132-1
Kobayashi S., Kikukawa N., Sugasawa M., and Yamaura I. - Method for regenerating adsorbent by heating, US 2005/018406 A1 (2005).
Kikukawa N., Takemori M., Nagano Y., Sugasawa M., and Kobayashi S. - Synthesis and magnetic properties of nanostructured spinel ferrites using a glycine–nitrate process, J. Magn. Magn. Mater. 284 (2004) 206-214. DOI: https://doi.org/10.1016/j.jmmm.2004.06.039
(a) Phuc N. X., Tuan N. A., Thuan N. C., Tuan V. A., and Hong L. V. - Magnetic nanoparticles as smart heating mediator for hyperthermia and sorbent reggeneration, Advanced Materials Research, Trans Tech. Publ. 55-57 (2008) 27-32; (b) Phuc N. X., Yen H., Linh B. H., Tuan N. A., Thuan N. C., Hong L. V., Thang D. C., Thanh H. V., T. P. D., and Tuan V. A. – Investigations of (Mn-Zn) spinel ferrite nanoparticles and application in VOC desorption by magnetic heating, Procds. International Workshop on Nanotechnology & Application, IWNA Vung Tau, Viet Nam 2007, pp. 232-235.
Lin L., Wang M., Peng X., Lissek E. N., Mao Z., Scarabelli L., Adkins E., Coskun S., Unalan H. E., Korgel B. A., Liz-Marzán L. M., Florin E.-L., and Zheng Y. - Opto-thermoelectric nanotweezers, Nat. Photonics. 12 (2018) 195-201. DOI: https://doi.org/10.1038/s41566-018-0134-3
Uchida K., Takahashi S., Harii K., Ieda J., Koshibae W., Ando K., Maekawa S., and Saitoh E. - Observation of the spin Seebeck effect, Nature. 455 (2008) 778-781. DOI: https://doi.org/10.1038/nature07321
Choi G. M., Min B. C., Lee K. J., and Cahill D. G. - Spin current generated by thermally driven ultrafast demagnetization, Nat. Commun. 5 (2014) 4334. DOI: https://doi.org/10.1038/ncomms5334
Bello F., Wolf D., Parker G. J., Wolf C., Krichevsky A., Zong F., Abadía N., and Donegan J. F. - Optical, thermal, and bit-writing analysis of a directly coupled plasmonic waveguide for heat-assisted magnetic recording, OSA Continuum. 3 (2020) 2010-2021. DOI: https://doi.org/10.1364/OSAC.396439
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.