Preparation of hydrogel based on cellulose from sugarcane bagasse

Nguyen Ha Thu, Nguyen Thi Quyen, Vu Anh Duc, Hoang Thu Hang, Do Thu Ha, Tran Ngoc Anh, Nguyen Ngoc Mai
Author affiliations

Authors

  • Nguyen Ha Thu School of Chemistry and Life Science, Hanoi University of Science and Technology, No.1 Dai Co Viet street, Hai Ba Trung district, Ha Noi, Viet Nam
  • Nguyen Thi Quyen School of Chemistry and Life Science, Hanoi University of Science and Technology, No.1 Dai Co Viet street, Hai Ba Trung district, Ha Noi, Viet Nam
  • Vu Anh Duc School of Chemistry and Life Science, Hanoi University of Science and Technology, No.1 Dai Co Viet street, Hai Ba Trung district, Ha Noi, Viet Nam
  • Hoang Thu Hang School of Chemistry and Life Science, Hanoi University of Science and Technology, No.1 Dai Co Viet street, Hai Ba Trung district, Ha Noi, Viet Nam
  • Do Thu Ha School of Chemistry and Life Science, Hanoi University of Science and Technology, No.1 Dai Co Viet street, Hai Ba Trung district, Ha Noi, Viet Nam
  • Tran Ngoc Anh School of Chemistry and Life Science, Hanoi University of Science and Technology, No.1 Dai Co Viet street, Hai Ba Trung district, Ha Noi, Viet Nam
  • Nguyen Ngoc Mai School of Chemistry and Life Science, Hanoi University of Science and Technology, No.1 Dai Co Viet street, Hai Ba Trung district, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17983

Keywords:

hydrogel, cellulose, sugarcane bagasse

Abstract

In this study, the preparation and characterization of hydrogels from sugarcane bagasse were investigated. The preparation of hydrogels was made with cellulose extracted from sugarcane bagasse, ammonium persulfate as initiator, acrylic acid as monomer and N,N’-Methylenebisacrylamide as crosslinking agent. The characterization of structure and properties of the hydrogels were carried out through Fourier-transform Infrared spectroscopy, Focused Ion Beam Scanning Electron Microscopy, determination of Young’s modulus, tensile strength, elongation at break and Charpy impact, swelling degree and Thermogravimetric Analysis. The optimal condition for the preparation was found at 1.0 g ammonium persulfate/kg cellulose, 1.6 g acrylic acid/kg cellulose and 0.2 g N,N’-Methylenebisacrylamide/kg cellulose. It was found that both anion and cation can be absorbed in the 3D-network of the hydrogel. The highest Young’s modulus, tensile strength, elongation at break and Charpy impact of the obtained hydrogel is 1.3 MPa, 5.2 MPa, 89.0% ad 7.2 kJ/m2, respectively. The hydrogel is stable until 110 oC. The results show that the obtained hydrogel may be suitable for electrolyte membrane used in battery.

Downloads

Download data is not yet available.

References

Ozay O., Ekici S., Baran Y., Aktas N., Sahiner N. - Removal of toxic metal ions with magnetic hydrogels, Water Res. 43 (2009) 4403-4411. doi: 10.1016/j.watres.2009.06.058.

Guan Y., Bian J., Peng F., Zhang X. M., Sun R. C. - High strength of hemicelluloses based hydrogels by freeze/thaw technique, Carbohydr. Polym. 101 (2014) 272-280.

Mondal M. I. H., Haque M.O., Ahmed F., Pervez M.N., Naddeo V., Ahmed M. B. - Super-Adsorptive Biodegradable Hydrogel from Simply Treated Sugarcane Bagasse, Gels 8 (2022) 177. doi: 10.3390/ gels8030177.

Hu W., Wang Z., Xiao Y., Zhanga S., Wang J. - Advances in crosslinking strategies of biomedical hydrogels, Biomater. Sci. 7 (2019) 843-855.

Alam M. N., Islam M. S., Christopher L. P. - Sustainable production of cellulose-based hydrogels with superb absorbing potential in physiological saline, ACS Omega 4 (2019) 9419-9426.

Mondal M. I. H., Yeasmin M. S., Rahman M. S. - Preparation of food grade carboxymethyl cellulose from corn husk agrowaste, Int. J. Biol. Macromol. 79 (2015) 144-150.

Mai T. T. P., Lan N. P., Linh H. N., Linh P. T. - Investigation on synthesis of hydrogel starting from Vietnamese pineapple leaf waste-derived carboxymethylcellulose, J. Anal. Methods Chem. Article ID 6639964 (2021) 12 pages. doi: 10.1155/2021/6639964

Trang T. T .C., Nhan T. T. V., Khoa D. N, Ha M. B. - Preparation of Cellulose-based Hydrogel Derived from Tea Residue for the Adsorption of Methylene Blue, Cellu. Chem Technol. 53 (2019) 1-10.

Asagekar S. D., Joshi V. K. - Characteristics of sugarcane fibers, Indian J. Fibre. Text. Res. 39 (2014) 80-184.

Nakasone K., Ikematsu S., Kobayashi T. - Biocompatibility Evaluation of Cellulose Hydrogel Film Regenerated from Sugarcane Bagasse Waste and Its in vivo Behavior in Mice, Ind. Eng. Chem. Res. 55 (2016) 30-37.

Chia P. X., Tan L. J., Huang C. M. Y., Chan E. W. C., Wong S. Y. W. - Hydrogel beads from sugar cane bagasse and palm kernel cake, and the viability of encapsulated Lactobacillus acidophilus, e-Polymers 15 (2015) 411-418.

Kabir S. M. F., Sikdar P. P., Haque B., Bhuiyan M. A. R., Ali A., Islam M. N. - Cellulose‐based hydrogel materials: chemistry, properties and their prospective applications, Prog. Biomat. 7 (2018) 153–174.

Kundu R., Mahada P., Chhirang B., Das B. - Cellulose hydrogels: Green and sustainable soft biomaterials, Curr. Res. Green Sustainable Chem. 5 (2022) 100252. doi:10.1016/ j.crgsc.2021.100252.

Nguyen T. H., Nguyen M. T., Vuong B. H., Le T. H. - Cellulose grafted with polyaniline for simultaneous adsorption of cationic and anionic dyes in wastewater effluent, Cellulose 29 (2022) 1-13. doi: 10.1007/s10570-022-04748-7.

Nguyen T. H., Tran V. C., Nguyen M. T., Cao A. Q., Tran T. T. - Preparation of green material based on sugarcane bagasse and epoxidized natural rubber, Polym. Bull. 80 (2023) 3359–3375. doi: 10.1007/s00289-022-04219-w.

Rosa M. F., Medeiros E. S., Malmonge J. A., Gregorski K. S., Wood D.F . - Mattoso L.H.C., Imam S. H., Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior, Carbohyd. Polym. 81 (2010) 83-92.

Yan H., Hua Z., Qian G., Wang M., Du G., Chen J. - Analysis of the chemical composition of cotton seed coat by fourier-transform infrared (FT-IR) microspectroscopy, Cellulose 16 (2009) 1099-1107.

Xu F., Yu J., Tesso T., Dowell F., Wang D. - Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review, Appl. Energy 104 (2013) 801-809.

Lijuan F., Huaiyu Y., Xiqing D., Haibo L., Di C. - pH-sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition, J. Appl. Polym. Sci. 135 (2018) 45886, doi: 10.1002/APP.45886.

Downloads

Published

16-08-2024

How to Cite

[1]
Nguyen Ha Thu, “Preparation of hydrogel based on cellulose from sugarcane bagasse”, Vietnam J. Sci. Technol., vol. 62, no. 4, pp. 737–747, Aug. 2024.

Issue

Section

Materials