A high-sensitivity hydrogen gas sensor based on Ag nanoparticle-decorated porous Co3O4 nanorods

Vu Hung Sinh, Duong Tuan Quang, Tran Quy Phuong, Tran Thai Hoa, Nguyen Van Hieu, Nguyen Duc Cuong
Author affiliations

Authors

  • Vu Hung Sinh University of Education, Hue University, 34 Le Loi, Hue City, Thua Thien Hue Province, Viet Nam
  • Duong Tuan Quang University of Education, Hue University, 34 Le Loi, Hue City, Thua Thien Hue Province, Viet Nam
  • Tran Quy Phuong University of Sciences, Hue University, 77 Nguyen Hue, Hue City, Thua Thien Hue Province, Viet Nam
  • Tran Thai Hoa University of Sciences, Hue University, 77 Nguyen Hue, Hue City, Thua Thien Hue Province, Viet Nam
  • Nguyen Van Hieu Faculty of Electrical and Electronic Engineering, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi city, Viet Nam
  • Nguyen Duc Cuong University of Sciences, Hue University, 77 Nguyen Hue, Hue City, Thua Thien Hue Province, Viet Nam https://orcid.org/0000-0002-7341-3661

DOI:

https://doi.org/10.15625/2525-2518/17639

Keywords:

Ag nanoparticles, porous Co3O4 nanorods, H2, gas sensors

Abstract

In this report, Ag nanoparticle-decorated cobalt carbonate hydroxide microflowers were synthesized using a simple hydrothermal approach without using surfactants, which were used as precursors to prepare Ag nanoparticle-decorated porous Co3O4 nanorods through an annealing process. The porous Co3O4 nanorods were composed of small primary nanoparticles with a size of ~ 10 nm, and their surface was decorated with uniform Ag nanoparticles (~ 10 nm). Sensors based on the porous Co3O4 nanorods decorated with Ag nanoparticles have higher sensitivity and selectivity to H2 gas than other reduced gases, as well as rapid response-recovery times. The enhanced H2 sensing properties of the sample may be attributed to the excellent catalytic features of Ag nanoparticles and unique porous Co3O4 nanorods. The results demonstrated the potential of Ag nanoparticle-decorated porous Co3O4 nanorods as sensing materials for the detection of hydrogen gas at low temperatures.

Downloads

Download data is not yet available.

References

Lee J. H. - Gas sensors using hierarchical and hollow oxide nanostructures: Overview, Sensors Actuators B Chem. 140 (2009) 319-336. https://doi.org/10.1016/ j.snb.2009.04.026. DOI: https://doi.org/10.1016/j.snb.2009.04.026

Son L. L., Cuong D., Van Thi T., Hieu T. - Konjac glucomannan-templated synthesis of three-dimensional NiO nanostructures assembled from porous NiO nanoplates for gas sensors, RSC Adv. 9 (2019) 9584-9593. https://doi.org/10.1039/C9RA00285E. DOI: https://doi.org/10.1039/C9RA00285E

Cheng P., Dang F., Wang Y., Gao J., Xu L., Wang C., Lv L., Li X., Zhang B., Liu B. - Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis, Sensors Actuators B Chem. 328 (2021) 129028. https://doi.org/10.1016/j.snb.2020.129028. DOI: https://doi.org/10.1016/j.snb.2020.129028

Sun J., Yang Y., Wang J., Zhang Z., Guo J. - In-situ construction of cobalt oxide/ nitrogen-doped porous carbon compounds as efficient bifunctional catalysts for oxygen electrode reactions, J. Alloys Compd. 827 (2020) 154308. https://doi.org/10.1016/ j.jallcom.2020.154308. DOI: https://doi.org/10.1016/j.jallcom.2020.154308

Wen Z., Zhu L., Mei W., Li Y., Hu L., Sun L., Wan W., Ye Z. - A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing, J. Mater. Chem. A. 1 (2013) 7511. https://doi.org/ 10.1039/c3ta11004d. DOI: https://doi.org/10.1039/c3ta11004d

Geng B., Zhan F., Fang C., Yu N. - A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room-temperature gas sensing properties, J. Mater. Chem. 18 (2008) 4977. https://doi.org/10.1039/b805378b. DOI: https://doi.org/10.1039/b805378b

Nguyen H., El-Safty S. A. - Meso- and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors, J. Phys. Chem. C.115 (2011) 8466-8474. https://doi.org/10.1021/jp1116189. DOI: https://doi.org/10.1021/jp1116189

Han Y., Li H., Zhang M., Fu Y., Liu Y., Yang Y., Xu J., Geng Y., Wang L. - Self-supported Co(CO3)0.5(OH)•0.11H2O nanoneedles coated with CoSe2-Ni3Se2 nanoparticles as highly active bifunctional electrocatalyst for overall water splitting, Appl. Surf. Sci. 495 (2019) 143606. https://doi.org/10.1016/j.apsusc.2019.143606. DOI: https://doi.org/10.1016/j.apsusc.2019.143606

Quang P. L., Cuong N. D., Hoa T. T., Long H. T., Hung C. M., Le D. T. T., Hieu N. V. - Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance, Sensor. Actuat. B. 270 (2018) 158-166. DOI: https://doi.org/10.1016/j.snb.2018.05.026

Cuong N. D., Tran T. D., Nguyen Q. T., Hai H. V. M., Hoa T. T., Quang D. T., Klysubun W., Tran P. D. - Highly porous Co-doped NiO nanorods: facile hydrothermal synthesis and electrocatalytic oxygen evolution properties, R. Soc. Open Sci. 8 (2021) 202352. https://doi.org/10.1098/rsos.202352. DOI: https://doi.org/10.1098/rsos.202352

Orfi H., A.A. Mekkaoui, B. Sündü, M. Laayati, S.A. Labyad, L. El Firdoussi, Ö. Metin, S. El Houssame, Ag, Co3O4, Ag–Co3O4, and Ag/Co3O4 Nanoparticles Decorated Mesoporous Natural Phosphate: Effect of Metal Synergy and Preparation Method on the Catalytic Reduction Reaction, J. Inorg. Organomet. Polym. Mater.,32 (2022) 2192–2208. https://doi.org/10.1007/s10904-022-02262-8. DOI: https://doi.org/10.1007/s10904-022-02262-8

Zhu S., Tian Q., Wu G., Bian W., Sun N., Wang X., Li C., Zhang Y., Dou H., Gong C., Dong X., Sun J., An Y., Jing Q., Liu B. - Highly sensitive and stable H2 gas sensor based on p-PdO-n-WO3-heterostructure-homogeneously-dispersing thin film, Int. J. Hydrogen Energy. 47 (2022) 17821-17834. https://doi.org/10.1016/j.ijhydene.2022.03.237. DOI: https://doi.org/10.1016/j.ijhydene.2022.03.237

Meng X., Bi M., Xiao Q., Gao W. - Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles, Int. J. Hydrogen Energy. 47 (2022) 3157-3169. https://doi.org/10.1016/j.ijhydene.2021.10.201. DOI: https://doi.org/10.1016/j.ijhydene.2021.10.201

Chauhan P. S., Bhattacharya S. - Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review, Int. J. Hydrogen Energy. 44 (2019) 26076-26099. https://doi.org/10.1016/j.ijhydene.2019.08.052. DOI: https://doi.org/10.1016/j.ijhydene.2019.08.052

Li Z., Zhang G., Gao W., Zhao R., Wang Y. - Ag decorated ZnO nanocrystallines synthesized by a low-temperature solvothermal method and their application for high response H2 gas sensor, J. Mater. Sci. Mater. Electron. 30 (2019) 18959-18969. https://doi.org/10.1007/s10854-019-02253-5. DOI: https://doi.org/10.1007/s10854-019-02253-5

Son L. L., Van Thi T. T., Trung K. Q., Van Hieu N., Trung D. D., Cuong N. D. - Facile and Scalable Fabrication of Highly Porous Co3O4 and α-Fe2O3 Nanosheets and Their Catalytic Properties, J. Electron. Mater. 48 (2019) 7897-7905. DOI: https://doi.org/10.1007/s11664-019-07616-6

Pal N., Agarwal M., Gupta R. - Green synthesis of guar gum/Ag nanoparticles and their role in peel-off gel for enhanced antibacterial efficiency and optimization using RSM, Int. J. Biol. Macromol. 221 (2022) 665-678. https://doi.org/10.1016/j.ijbiomac.2022.09.036. DOI: https://doi.org/10.1016/j.ijbiomac.2022.09.036

Zhou T., Lu P., Zhang Z., Wang Q., Umar A. - Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor, Sensors Actuators B Chem. 235 (2016) 457-465. https://doi.org/10.1016/ j.snb.2016.05.075. DOI: https://doi.org/10.1016/j.snb.2016.05.075

Feng C., Yang J., Xiao C., Xin B., Zhang S., Wang L., Geng B. - Glycerate-derived Co3O4 nano-microspheres as efficient catalysts for oxygen evolution reaction, Appl. Surf. Sci. 598 (2022) 153795. https://doi.org/10.1016/j.apsusc.2022.153795. DOI: https://doi.org/10.1016/j.apsusc.2022.153795

Wang B., Zhu T., Bin Wu H., Xu R., Chen J. S., (David) Lou X.W. - Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)•0.11H2O nanowires with improved supercapacitive properties, Nanoscale. 4 (2012) 2145. https://doi.org/10.1039/c2nr11897a. DOI: https://doi.org/10.1039/c2nr11897a

Mulfinger L., Solomon S. D., Bahadory M., Jeyarajasingam A. V., Rutkowsky S. A., Boritz C. -Synthesis and Study of Silver Nanoparticles, J. Chem. Educ. 84 (2007) 322. https://doi.org/10.1021/ed084p322. DOI: https://doi.org/10.1021/ed084p322

Zhang L., Gao Z., Liu C., Zhang Y., Tu Z., Yang X., Yang F., Wen Z., Zhu L., Liu R., Li Y., Cui L. - Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor, J. Mater. Chem. A. 3 (2015) 2794-2801. https://doi.org/ 10.1039/C4TA06440B. DOI: https://doi.org/10.1039/C4TA06440B

Yin X.T., Li J., Dastan D., Zhou W. D., Garmestani H., Alamgir F. M. - Ultra-high selectivity of H2 over CO with a p-n nanojunction based gas sensors and its mechanism, Sensors Actuators B Chem. 319 (2020) 128330. https://doi.org/10.1016/ j.snb.2020.128330. DOI: https://doi.org/10.1016/j.snb.2020.128330

Yadav P., Kumar A., Sanger A., Gautam Y. K., Singh B. P. - Sputter-Grown Pd-Capped CuO Thin Films for a Highly Sensitive and Selective Hydrogen Gas Sensor, J. Electron. Mater. 50 (2021) 192-200. https://doi.org/10.1007/s11664-020-08588-8. DOI: https://doi.org/10.1007/s11664-020-08588-8

Kadhim I. H., Hassan H. A., Abdullah Q. N. - Hydrogen Gas Sensor Based on Nanocrystalline SnO2 Thin Film Grown on Bare Si Substrates, Nano-Micro Lett. 8 (2016) 20-28. https://doi.org/10.1007/s40820-015-0057-1. DOI: https://doi.org/10.1007/s40820-015-0057-1

Sarıca N., Alev O., Arslan L. Ç., Öztürk Z. Z. - Characterization and gas sensing performances of noble metals decorated CuO nanorods, Thin Solid Films. 685 (2019) 321-328. https://doi.org/10.1016/j.tsf.2019.06.046. DOI: https://doi.org/10.1016/j.tsf.2019.06.046

Nakate U. T., Ahmad R., Patil P., Bhat K. S., Wang Y., Mahmoudi T., Yu Y. T., Suh E., Hahn Y. B. - High response and low concentration hydrogen gas sensing properties using hollow ZnO particles transformed from polystyrene@ZnO core-shell structures, Int. J. Hydrogen Energy. 44 (2019) 15677-15688. https://doi.org/10.1016/j.ijhydene. 2019.04.058. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.058

Godbole R., Ameen S., Nakate U. T., Shaheer Akhtar M., Shin H. S. - Low temperature HFCVD synthesis of tungsten oxide thin film for high response hydrogen gas sensor application, Mater. Lett. 254 (2019) 398-401. https://doi.org/10.1016/ j.matlet.2019.07.110. DOI: https://doi.org/10.1016/j.matlet.2019.07.110

Cattabiani N., Baratto C., Zappa D., Comini E., Donarelli M., Ferroni M., Ponzoni A., Faglia G. - Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing at Room Temperature: Bridging Conductometric Gas Sensing and Plasmon-Driven Catalysis, J. Phys. Chem. C. 122 (2018) 5026-5031. https://doi.org/10.1021/acs.jpcc.7b09807. DOI: https://doi.org/10.1021/acs.jpcc.7b09807

MaJ., Mei L., Chen Y., Li Q., Wang T., Xu Z., Duan X., Zheng W. - α-Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas, Nanoscale. 5 (2013) 895-898. https://doi.org/10.1039/C2NR33201A. DOI: https://doi.org/10.1039/C2NR33201A

Downloads

Published

10-05-2024

How to Cite

[1]
V. H. Sinh, D. T. Quang, T. Q. Phuong, T. T. Hoa, N. V. Hieu, and N. D. Cuong, “A high-sensitivity hydrogen gas sensor based on Ag nanoparticle-decorated porous Co3O4 nanorods”, Vietnam J. Sci. Technol., vol. 62, no. 3, pp. 508–520, May 2024.

Issue

Section

Materials