Effects of graphene content on formation and characteristics of char layer in intumescent coating

Phan Ngoc Hong, Nguyen Tuan Hong, Nguyen Anh Duc, Nguyen Thi Ngoc Tu, Le Van Duan, Vu The Ninh, Tran Thu Trang, Nguyen Thi Lien, Giang Thi Phuong Ly, Dung Nguyen Viet
Author affiliations

Authors

  • Phan Ngoc Hong Center for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Tuan Hong Center for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Anh Duc Faculty of Basic-fundamental Sciences, Vietnam Maritime University, 484 Lach Tray, Kenh Duong, Le Chan District, Hai Phong, Viet Nam
  • Nguyen Thi Ngoc Tu Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi, Viet Nam
  • Le Van Duan Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi, Viet Nam
  • Vu The Ninh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi, Viet Nam
  • Tran Thu Trang Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Thi Lien Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi, Viet Nam
  • Giang Thi Phuong Ly School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam
  • Dung Nguyen Viet Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17610

Keywords:

flameretardant coating, intumescent, graphene, char layer

Abstract

This study provides a better understanding of the role and mechanism of graphene nano-platelets used as a flame-retardant filler in a commercial intumescent acrylic-based formulation. Through thermogravimetric analysis, the morphology and mechanical properties of the char layer as well as the influence of graphene on the expansion ratio and compression force are clarified. The achieved results demonstrate that graphene accelerates the burning of the coating and affects the structure of the char layer. The fire test was carried out in an electric furnace at a temperature of up to 800 °C for our fabricated samples, the swelling images show that the expansion ratio of the graphene-loaded coating is lower than that of the coating without graphene. On the other hand, during the combustion, the speed of air release occurring in a short time also contributes to forming bigger holes in the char layer, so the hardness of the graphene-loaded char layer is lower than that of the char layer without graphene coating.

Downloads

Download data is not yet available.

References

1. Lucherini A. and Maluk C. - Intumescent coatings used for the fire-safe design of steel structures: A review, J. Constr. Steel Res. 162 (2019) 105712.

2. Tatiana E. and Dmitry K. - Fire Protection of Building Constructions with the Use of Fire-Retardant Intumescent Compositions, Buildings journal 10 (2020),185.

3. Zybina O. and Gravit M. - Intumescent coatings for fire protection of building structures and materials, Springer International Publishing, Berlin/Heidelberg, Germany, 2020.

4. Yasir M., Ahmad F., Yusoff P. S. M. M., Ullah S., and Jimenez M. - Latest trends for structural steel protection by using intumescent fire protective coatings: a review, Surf. Eng. 36 (4) (2019) 1-30.

5. Ravindra G. Puri, Khanna A. S. - Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel, Prog. Org. Coat. 92 (2016) 8-15.

6. Horrocks A. R. and Price D. - Fire retardant materials. Woodhead Publishing, CRC Press, 1st Edition, 2001.

7. Charles A. Wilkie and Alexander B. Morgan - Fire Retardancy of Polymeric Materials, CRC Press. 2nd Edition, 2010, pp. 129.

8. Edward D. Weil - Fire-Protective and Flame-Retardant Coatings - A State-of-the-Art Review, J. Fire Sci. 29 (2010) 259-296.

9. Ravindra G. Puri, Khanna A. S. - Intumescent coatings: A review on recent progress, J. Coat. Technol. Res. 14 (1) (2017) 1-20.

10. M. Jimenez, S. Duquesne, and S. Bourbigot - Multiscale Experimental Approach for Developing High-Performance Intumescent Coatings, Ind. Eng. Chem. Res. 45 (2006) 4500-4508.

11. Gu J. W., Zhang G. C., Dong S. L., Zhang Q. Y., Kong J. - Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings, Surf. Coat. Technol. 201 (2007) 7835-7841.

12. Zia-ul-Mustafa M., Faiz A., Sami U., Norlaili A., Qandeel F. G. - Thermal and pyrolysis analysis of minerals reinforced intumescent fire retardant coating, Prog. Org. Coat. 102 (2017) 201-216.

13. Yew M. C., Ramli Sulong N. H., Yew M. K., Amalina M. A., Johan M. R. - Influences of flame-retardant fillers on fire protection and mechanical properties of intumescent coatings, Prog. Org. Coat. 78 (2015) 59-66.

14. Gu J. W., Zhang G. C., Dong S. L., Zhang Q. Y., Kong J. - Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings, Surf. Coat. Technol., 201 (2007), 7835–7841.

15. Yan H. N., Aravind D., Kang H. T., Lijun Q. - Intumescent fire-retardant acrylic coatings: Effects of additive loading ratio and scale of testing, Prog. Org. Coat. 150 (2021) 105985.

16. Wang Z., Han E., Ke W. - Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings, Corros. Sci. 49 (2007) 2237-2253.

17. Camilli L., Yu F., Cassidy A., Hornekaer L., and Boggild P. - Challenges for continuous graphene as a corrosion barrier. 2D Mater., 6(2) (2019), 1-29.

18. Camilli L., Yu F., Cassidy A., Hornekaer L., and Boggild P. - Challenges for continuous graphene as a corrosion barrier, 2D Mater. 6 (2) (2019) 1-29.

19. Amir B., Saeed Z. H. - Is MWCNT a good synergistic candidate in APP-PER-MEL intumescent coating for steel structure?, Prog. Org. Coat. 90 (2016) 252-257.

20. Wang Z., Han E., Ke W. - Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP/DPER/MEL coating, Polym. Degrad. Stab. 91 (2006) 1937-1947.

21. Aziz H., Ahmad F. – Effect from nano-titanium oxide on the thermal resistance of an intumescent fire-retardant coating for structural application, Prog. Org. Coat.,101 (2016) 431-439.

22. Li H. F., Hu Z. W., Zhang S., Gu X. Y., Wang H. J. – Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants, Prog. Org. Coat. 78 (2015), 318-324.

23. Yu. M. Evtushenko, Yu. A. Grigoriev, T. A. Rudakova, A. N. Ozerin – Effect of aluminum hydroxide on the fireproofing properties of ammonium polyphosphate-pentaerythritol-based intumescent coating, J. Coat. Technol. Res. 16 (5) (2019) 1389-1398

24. Bourbigot S., Bras M. L., Delobel R., Bréant P., Tremillon J. M. - 4A zeolite synergistic agent in new flame retardant intumescent formulations of polyethylenic polymers – study of the effect of the constituent monomers, Polym. Degrad. Stab. 54 (1996) 275-287.

25. Olcese T., Pagella C. - Vitreous fillers in intumescent coatings, Prog. Org. Coat. 36 (1999) 231-241.

26. Jesbains K., Faiz A., Sami U., Yusoff P. S. M. M., Rafiq A. - The role of bentonite clay on improvement in char adhesion of intumescent fire-retardant coating with steel substrate, Arab J. Sci. Eng. 42 (2017) 2043-2053.

27. Wu Q., Qu B. - Synergistic effects of silicotungistic acid on intumescent flameretardant polypropylene, Polym. Degrad. Stab. 74 (2001) 225-261.

Downloads

Published

28-10-2024

How to Cite

[1]
P. N. Hong, “Effects of graphene content on formation and characteristics of char layer in intumescent coating”, Vietnam J. Sci. Technol., vol. 62, no. 5, pp. 906–914, Oct. 2024.

Issue

Section

Materials