Image compression in all-optical domain using one 6×6 multimode interference coupler

Bui Thi Thuy, Le Trung Thanh
Author affiliations

Authors

  • Bui Thi Thuy International School (VNU-IS), Vietnam National University, No.144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam
  • Le Trung Thanh FPT University, Education Zone, Hoa Lac Hi-tech Park, km 29, Thang Long Boulevard, Thach Hoa, Thach That, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17417

Keywords:

image compression, Haar wavelet transform, signal transform, optical signal processing, optical image processing

Abstract

We present a new method for image compression using the Haar wavelet transform (HWT) in all-optical domain. The proposed architecture is based on the optical Haar wavelet transform using only one 6×6 multimode interference (MMI) coupler. By locating the positions of input and output waveguides and optimizing design length of the MMI, the expected matrix of the Haar transform is obtained. The new hardware architecture is suitable for directly integrating with digital cameras for image processing. The processing of images therefore is at very high speed. Our method can also be applied to data compression in big data analytics. Our structure can provide a large fabrication tolerance which is compatible with the CMOS existing technology. Our simulations show that the length variation of ± 2 µm still keeps the output powers unchanged. We have simulate successfully the use of the proposed HWT to compress cameraman image with the compressed ratios of 20, 30, 50 % with MSE and PSNR from 0.1 - 0.3 and 62 – 67 dB, respectively.

 

Downloads

Download data is not yet available.

References

Xu X., Tan M., Corcoran B., Wu J., Boes A., Nguyen T. G., Chu S. T., Little B. E., Hicks D. G., Morandotti R., Mitchell A., Moss D. J. - 11 TOPS photonic convolutional accelerator for optical neural networks, Nature. 589 (2021) 44-51. DOI: https://doi.org/10.1038/s41586-020-03063-0

Xiang S., Han Y., Song Z., Guo X., Zhang Y., Ren Z., Wang S., Ma Y., Zou W., Ma B., Xu S., Dong J., Zhou H., Ren Q., Deng T., Liu Y., Han G., Hao Y. - A review: Photonics devices, architectures, and algorithms for optical neural computing, Journal of Semiconductors. 42 (2021) 023105. DOI 10.1088/1674-4926/42/2/023105 DOI: https://doi.org/10.1088/1674-4926/42/2/023105

Sunny F. P., Taheri E., Nikdast M., Pasricha S. - A Survey on Silicon Photonics for Deep Learning, J. Emerg. Technol. Comput. Syst. 17 (2021). DOI: 10.48550/arXiv.2101.01751 DOI: https://doi.org/10.1145/3459009

Deligiannidis L., Arabnia H. - Emerging Trends in Image Processing, Computer Vision and Pattern Recognition, Morgan Kaufmann, Leonidas Deligiannidis, Hamid Arabnia, 2014.

Papaioannou M., Plum E., Zheludev N. I. - All-Optical Pattern Recognition and Image Processing on a Metamaterial Beam Splitter, ACS Photonics. 4 (2017) 217-222. https://doi.org/10.1021/acsphotonics.6b00921 DOI: https://doi.org/10.1021/acsphotonics.6b00921

Azimi Fashi A., Vadjed Samiei M. H., Teixeira A. - Design of a visible light photonic chip for Haar transform based optical compression, Optik. 217 (2020) 164929. https://doi.org/10.1016/j.ijleo.2020.164929 DOI: https://doi.org/10.1016/j.ijleo.2020.164929

Almeida L., Kumar N., Parca G., Tavares A., Lopes A., Teixeira A. - All-Optical image processing based on integrated optics. 16th International Conference on Transparent Optical Networks (ICTON), IEEE. Please add information - Vol…? (2014) 14526424, doi: 10.1109/icton.2014.6876660 DOI: https://doi.org/10.1109/ICTON.2014.6876660

Fashi A. A., Samiei M. H. V., Pinho C., Teixeira A. L. - Photonic Integrated Chip on TriPleX Platform for Realizing Optical Haar Transform and Compression in the Visible Spectrum, IEEE Journal of Quantum Electronics 57 (2021) 1-10. doi:10.1109/ jqe.2021.3102845 DOI: https://doi.org/10.1109/JQE.2021.3102845

Siegman A. E. - Fiber Fourier optics, Optics Letters. 26 (2001) 1215-1217. DOI: 10.1364/ol.26.001215 DOI: https://doi.org/10.1364/OL.26.001215

Collings N. - Fourier Optics in Image Processing, CRC Press, 2020.

Le T. T. - The Design of Optical Signal Transforms Based on Planar Waveguides on a Silicon on Insulator Platform, International Journal of Engineering and Technology. 2 (2010) 245-251. doi:10.7763/ijet.2010.v2.128 DOI: https://doi.org/10.7763/IJET.2010.V2.128

Burrus S., Gopinath R. A., Guo H. - Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice Hall, United States, 1998.

Azimi Fashi A., Vadjed Samiei M. H., Teixeira A. - Realization of visible light integrated circuits for all-optical haar transform, Optical and Quantum Electronics. 53 (2021) 364. DOI: https://doi.org/10.1007/s11082-021-03008-5

Bachmann M., Besse P. A., Melchior H. - General self-imaging properties in N × N multimode interference couplers including phase relations, Appl. Opt. 33 (1994) 3905. DOI: 10.1364/AO.33.003905 DOI: https://doi.org/10.1364/AO.33.003905

Heaton J. M., Jenkins R. M. - General matrix theory of self-imaging in multimode interference(MMI) couplers, IEEE Photonics Technology Letters. 11 (1999) 212-214. DOI: 10.1109/68.740707 DOI: https://doi.org/10.1109/68.740707

Dominic F. G. G., Thomas P. F. - Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons, Integrated Optics: Devices, Materials, and Technologies VII. 4987 (10) (2003) 69-82. DOI: 10.1117/12.473173 DOI: https://doi.org/10.1117/12.473173

Downloads

Published

17-04-2023

How to Cite

[1]
B. T. Thuy and Le Trung Thanh, “Image compression in all-optical domain using one 6×6 multimode interference coupler”, Vietnam J. Sci. Technol., vol. 61, no. 2, pp. 291–301, Apr. 2023.

Issue

Section

Electronics - Telecommunication