Antibiotic resistance characteristics of potential probiotic Lactobacillus strains

Huong Thu Dang, Huy Son Dinh, Tu Anh Loc, La Anh Nguyen
Author affiliations

Authors

  • Huong Thu Dang Food Industries Research Institute
  • Huy Son Dinh
  • Tu Anh Loc
  • La Anh Nguyen

DOI:

https://doi.org/10.15625/2525-2518/17261

Keywords:

Antibiotic resistance genes, Lactobacillus, probiotics

Abstract

Antibiotic-resistant bacteria are increasingly common and threaten human health. Recently, antibiotic resistance in food associated bacteria become an emerging threat to this state. These bacteria may act as reservoirs of antibiotic resistance genes and transfer to commensal or pathogenic bacteria in the human intestines. Therefore, either probiotics or starter cultures have to be evaluated for antibiotic interaction. In this study, the antibiotic susceptibility of seven Lactobacillus strains was determined. The MIC values revealed that all strains were resistant to tetracycline, ciprofloxacin, vancomycin and aminoglycoside antibiotics group (gentamicin, neomycin, kanamycin and streptomycin). However, the results from PCR analysis showed that parC gene for ciprofloxacin resistance was only present in Lb. fermentum SMC2; vanX gene, responsible for the vancomycin resistance, was found in two strains Lb. plantarum AS34 and TJ26. Most strains showed susceptibilityto at least one type of protein synthesis inhibit antibiotics: chloramphenicol, erythromycin and clindamycin. Four strains Lb. brevis NCTH24, Lb. casei PK2, Lb. fermentum SBV2, and Lb. plantarum NCDC3 did not carry any antibiotic resistance genes which indicates these antibiotic resistances are intrinsic and nontransmissible.

Downloads

Download data is not yet available.

References

Guido R., Gabriele A., Giovanna A., Vasileios B., Maria D.L.B., Georges B., Andrew C., Pier S.C., Gerhard F., Jurgen G. et al. - Guidance on the characterization of microorganisms used as feed additives or as production organisms, EFSA Journal 16 (3) (2018) 5206. https://doi.org/10.2903/j.efsa.2018.5206. DOI: https://doi.org/10.2903/j.efsa.2018.5206 https://doi.org/10.2903/j.efsa.2018.5206.">

Huys G., D’Haene K., Swings J. - Genetic basis of tetracycline and minocycline resistance in potentially probiotic Lactobacillus plantarum strain CCUG 43738, Antimicrobial Agents and Chemotherapy 50 (4) (2006) 1550-1551. https://doi.org/10.1128/ AAC.50.4.1550-1551.2006. DOI: https://doi.org/10.1128/AAC.50.4.1550-1551.2006 https://doi.org/10.1128/ AAC.50.4.1550-1551.2006.">

Florez A. B., Ammor M. S., Delgado S., Mayo B. - Molecular analysis of a chromosome-carried erm(B) gene and its flanking insertion points in Lactobacillus johnsonii G41, Antimicrobial Agents and Chemotherapy 50 (12) (2006) 4189-4190. https://doi.org/ 10.1128/ AAC.00657-06. DOI: https://doi.org/10.1128/AAC.00657-06 https://doi.org/ 10.1128/ AAC.00657-06.">

Sukmarini L., Mustopa A. Z., Normawati M., Muzdalifah I. - Identification of antibiotic-resistance genes from lactic acid bacteria in Indonesian fermented foods, HAYATI Journal of Biosciences 21 (3) (2014) 144-150. https://doi.org/10.4308/hjb.21.3.144. DOI: https://doi.org/10.4308/hjb.21.3.144 https://doi.org/10.4308/hjb.21.3.144.">

Sigrid M., Angela H. A. M. V. H., Christiane M., Geert H., Henk J. M. A., Wolfgang K., Konrad J. D. - Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants, Int. J. Food Microbiol. 144 (1) (2010) 81-87. https://doi.org/10.1016/ j.ijfoodmicro.2010.08.024. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.08.024 https://doi.org/10.1016/ j.ijfoodmicro.2010.08.024.">

Angela H. A. M. V.H., AbelardoM., Konrad J. D., Jenni M. K., Joanna Z. K., Jacek K. B., Morten D., Geert H., Lorenzo M.and Henk J. M. A. - Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance, International Journal of Probiotics and Prebiotics 3 (4) (2008) 271-280.

Rojo-Bezares B., Sáenz Y., Poeta P., Zarazaga M., Ruiz-Larrea F., and Torres C. -Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine, Int. J. Food Microbiol. 111(3)(2006) 234-240. https://doi.org/10.1016/ j.ijfoodmicro.2006.06.007. DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.06.007 https://doi.org/10.1016/ j.ijfoodmicro.2006.06.007.">

Aquilanti L., Garofalo C., Osimani A., Silvestri G., Vignaroli C., and Clementi F. - Isolation and molecular characterization of antibiotic–resistant lactic acid bacteria from poultry and swine meat products, J. Food Prot. 70 (3) (2007) 557-565. https://doi.org/10.4315/0362-028x-70.3.557. DOI: https://doi.org/10.4315/0362-028X-70.3.557 https://doi.org/10.4315/0362-028x-70.3.557.">

International Organization for Standardization (ISO). - Milk and milk products: determination of the minimal inhibitory concentration (MIC) of antibiotics applicable to bifidobacteria and non-enterococcal lactic acid bacteria (LAB), International Dairy Federation, Brussels, 2010, pp. 1-31.

Anadón A., Arboix A.M., Bories G., Brantom P., Brufau D.B.J., Chesson A., Cocconcelli P. S., Knecht J., Dierick N., Flachowsky G., Franklin A., Gropp J., et al. - Opinion of the Scientific Panel on additives and products or substances used in animal feed (FEEDAP) on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance, E. F. S. A. Journal 3 (6) (2005) 223-235. https://doi.org/ 10.2903/j.efsa.2005.223. DOI: https://doi.org/10.2903/j.efsa.2005.223 https://doi.org/ 10.2903/j.efsa.2005.223.">

Huiling G., Lin P., Lina L., Jie L., LaiyuK., BiligeM., HepingZ., and Wenyi Z. - Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products, Journal of Food Science 82 (3) (2017) 724-730. https://doi.org/10.1111/1750-3841.13645. DOI: https://doi.org/10.1111/1750-3841.13645 https://doi.org/10.1111/1750-3841.13645.">

Zhou J.S., Pillidge C.J., Gopal P.K., Gill H.S. - Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains, In. J. of Food Microbiology 98(2) (2005) 211–217. https://doi.org/10.1016/j.ijfoodmicro.2004.05.011. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.05.011 https://doi.org/10.1016/j.ijfoodmicro.2004.05.011.">

Hikmate A., MaríaD.C.C.M., Leyre L.L., Beatriz P. M., Wilhelm B., Rohtraud P., Jan K., GyuS.C., Charles M.A.P. F., Antonio G.,and Nabil B. - New insights in antibiotic resistance of Lactobacillus species from fermented foods, Food Research International 78 (2015) 465-481. https://doi.org/10.1016/j.foodres.2015.09.016. DOI: https://doi.org/10.1016/j.foodres.2015.09.016 https://doi.org/10.1016/j.foodres.2015.09.016.">

Anisimova E. A.and Dina R. Y. - Antibiotic Resistance of Lactobacillus strains, Current Microbiology 76 (12) (2019) 1407-1416. https://doi.org/ 10.1007/s00284-019-01769-7. DOI: https://doi.org/10.1007/s00284-019-01769-7 https://doi.org/ 10.1007/s00284-019-01769-7.">

Klein G., Hallmann C., Casas I.A., Abad J., Louwers J., and Reuter G. - Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods, J. Appl. Microbiol. 89 (5) (2000) 815-824. https://doi.org/10.1046/ j.1365-2672.2000.01187.x. DOI: https://doi.org/10.1046/j.1365-2672.2000.01187.x https://doi.org/10.1046/ j.1365-2672.2000.01187.x.">

Soile T., Kavindra V. S., Pekka V. - Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes, In. J. of F. Microbio. 41 (3) (1998) 195-204. https://doi.org/10.1016/s0168-1605(98)00051-8. DOI: https://doi.org/10.1016/S0168-1605(98)00051-8 https://doi.org/10.1016/s0168-1605(98)00051-8.">

Guido W., Ingo K., and Wolfgang W. - Large Conjugative vanA Plasmids in Vancomycin-Resistant Enterococcus faecium, J. Clin. Microbiol. 37 (7) (1999) 2383-2384. https://doi.org/10.1128/jcm.37.7.2383-2384.1999. DOI: https://doi.org/10.1128/JCM.37.7.2383-2384.1999 https://doi.org/10.1128/jcm.37.7.2383-2384.1999.">

Mater D.D.G., Langella P., Corthier G. and Flores M.J. - Aprobiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice, Journal of Molecular Microbiology and Biotechnology 14 (1-3) (2008) 123-127. https://doi.org/ 10.1159/000106091. DOI: https://doi.org/10.1159/000106091 https://doi.org/ 10.1159/000106091.">

Ammor M. S., Flórez A. B., Hoek A. H., Los R.G.C. G, Aarts H. J., Margolles A., Mayo B. - Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria, J. Mol. Microbiol Biotechnol. 14 (1-3) (2008) 6-15. DOI: https://doi.org/10.1159/000106077

Downloads

Published

15-12-2023

How to Cite

[1]
H. T. Dang, H. S. Dinh, T. A. Loc, and L. A. Nguyen, “Antibiotic resistance characteristics of potential probiotic Lactobacillus strains”, Vietnam J. Sci. Technol., vol. 61, no. 6, pp. 975–983, Dec. 2023.

Issue

Section

Natural Products