QSAR modeling and molecular docking studies on benzimidazole derivatives as anticancer agents
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/17072Keywords:
Benzimidazole, QSAR, anticancer, MDA-MB-231, molecular docking, topoisomerase IAbstract
Abstract. The triple-negative breast cancer cell line MDA-MB-231 has been known as one of the most tenacious cancer cancer cells and paid attention by many researchers. A two-dimension quantitative structure-activity relationship (2D-QSAR) model of 131 benzimidazole derivatives was developed to relate the chemical–biological interactions and predicted the half maximal inhibitory concentration (IC50) against MDA-MB-231 cell line. The 2D-QSAR model was obtained satisfactory internal and external validation parameters such as the square of correlation coefficient R2 = 0.904 and concordance correlation coefficient CCC = 0.867. The model was and applied on 35 synthesized benzimidazoles to predict IC50 values. The results showed that benzimidazoles with IC50 less than 50 µM displayed a quite similarity between predicted and experimental IC50 values (Ra2 = 0.924). The molecular docking study was investigated to clarify the binding mode of the most potential synthesized benzimidazoles (BLMM, and BL3H) into topoisomerase I-DNA complex. The docking results revealed that they intercalated and interacted to crucial amino acids in the binding site of complex by hydrogen bonds and hydrophobic interactions and compared to standard drug camptothecin.
Downloads
References
Siegel R. L., Miller K. D., Goding Sauer A., Fedewa S. A., Butterly L. F., Anderson J. C., Cercek A., Smith R. A. and Jemal A. - Colorectal cancer statistics, 2020, CA: Cancer J. Clin. 70 (3) (2020) 145-164. https://doi.org/10.3322/caac.21601.
Liu T., Song S., Wang X. and Hao J. - Small-molecule inhibitors of breast cancer-related targets: Potential therapeutic agents for breast cancer, Eur. J. Med. Chem. 210 (2020) 112954. https://doi.org/10.1016/j.ejmech.2020.112954. DOI: https://doi.org/10.1016/j.ejmech.2020.112954
Kasmi R., Hadaji E., Bouachrine M., and Ouammou A. - QSAR and molecular docking study of quinazoline derivatives as anticancer agents using molecular descriptors, Mater. Today: Proc. 51 (5) (2020) 18821-1830. https://doi.org/10.1016/j.matpr.2020.05.283. DOI: https://doi.org/10.1016/j.matpr.2020.05.283
Mohs R. C. and Greig N. H. - Drug discovery and development: Role of basic biological research, Alzheimers Dement. 3 (4) (2017) 651-657. https://doi.org/10.1016/ j.trci.2017.10.005. DOI: https://doi.org/10.1016/j.trci.2017.10.005
Murgueitio M. S., Bermudez M., Mortier J., and Wolber G. - In silico virtual screening approaches for anti-viral drug discovery, Drug Discov. Today Technol. 9 (3) (2012) e219-e225. https://doi.org/10.1016/j.ddtec.2012.07.009. DOI: https://doi.org/10.1016/j.ddtec.2012.07.009
Ekins S., Mestres J., and Testa B. - In silico pharmacology for drug discovery: applications to targets and beyond, Br. J. Pharmacol. 152 (1) (2007) 21-37. https://doi.org/10.1038/sj.bjp.0707306. DOI: https://doi.org/10.1038/sj.bjp.0707306
March-Vila E., Pinzi L., Sturm N., Tinivella A., Engkvist O., Chen H. and Rastelli G. - On the integration of in silico drug design methods for drug repurposing, Front. Pharmacol. 8 (2017) 298. https://doi.org/10.3389/fphar.2017.00298. DOI: https://doi.org/10.3389/fphar.2017.00298
Neves B. J., Braga R. C., Melo-Filho C. C., Moreira-Filho J. T., Muratov E. N. and Andrade C. H. - QSAR-based virtual screening: advances and applications in drug discovery, Front. Pharmacol. 9 (2018) 1275. https://doi.org/10.3389/fphar.2018.01275. DOI: https://doi.org/10.3389/fphar.2018.01275
Gardiner J. M., Loyns C. R., Burke A., Khan A. and Mahmood N. - Synthesis and HIV-1 inhibition of novel benzimidazole derivatives, Bioorg. Med. Chem. Lett. 5 (12) (1995) 1251-1254. https://doi.org/10.1016/0960-894X(95)00203-6. DOI: https://doi.org/10.1016/0960-894X(95)00203-6
Kumar J. R., Jawahar L J. and Pathak D. - Synthesis of benzimidazole derivatives: as anti-hypertensive agents, J. Chem. 3 (4) (2006) 278-285. https://doi.org/10.1155/2006/765712. DOI: https://doi.org/10.1155/2006/765712
Starčević K., Kralj M., Ester K., Sabol I., Grce M., Pavelić K. and Karminski-Zamola G. - Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles, Bioorg. Med. Chem. 15 (13) (2007) 4419-4426. https://doi.org/10.1016/ j.bmc.2007.04.032. DOI: https://doi.org/10.1016/j.bmc.2007.04.032
Akhtar M. J., Khan A. A., Ali Z., Dewangan R. P., Rafi M., Hassan M. Q., Akhtar M. S., Siddiqui A. A., Partap S. and Pasha S. - Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors, Bioorg. Chem. 78 (2018) 158-169. https://doi.org/10.1016/j.bioorg.2018.03.002. DOI: https://doi.org/10.1016/j.bioorg.2018.03.002
Acar Çevik U., Sağlık B. N., Osmaniye D., Levent S., Kaya Çavuşoğlu B., Karaduman A. B., Atlı Eklioğlu Ö., Özkay Y. and Kaplancıklı Z. A. - Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole-1, 3, 4-oxadiazole derivatives as human topoisomerase types I poison, J. Enzyme Inhib. Med. Chem. 35 (1) (2020) 1657-1673. DOI: https://doi.org/10.1080/14756366.2020.1806831
Nguyen T. D. - A facile and efficient synthesis of benzimidazole as potential anticancer agents, J. Chem. Sci. 132 (1) (2020) 1-9. DOI: https://doi.org/10.1007/s12039-020-01783-4
Huynh T. K. C., Nguyen T. H. A., Nguyen T. C. T., and Hoang T. K. D. - Synthesis and insight into the structure–activity relationships of 2-phenylbenzimidazoles as prospective anticancer agents, RSC Adv. 10 (35) (2020) 20543-20551. https://doi.org/ 10.1039/D0RA02282A. DOI: https://doi.org/10.1039/D0RA02282A
Wang J. C. - DNA topoisomerases, Annu. Rev. Biochem. 65 (1) (1996) 635-692. https://doi.org/10.1146/annurev.bi.65.070196.003223. DOI: https://doi.org/10.1146/annurev.bi.65.070196.003223
Staker B. L., Feese M. D., Cushman M., Pommier Y., Zembower D., Stewart L., and Burgin A. B. - Structures of three classes of anticancer agents bound to the human topoisomerase I− DNA covalent complex, J. Med. Chem. 48 (7) (2005) 2336-2345. https://doi.org/10.1021/jm049146p. DOI: https://doi.org/10.1021/jm049146p
Sheng C., Miao Z., and Zhang W. - New strategies in the discovery of novel non-camptothecin topoisomerase I inhibitors, Curr. Med. Chem. 18 (28) (2011) 4389-4409. https://doi.org/10.2174/092986711797200453. DOI: https://doi.org/10.2174/092986711797200453
Bansal S., Sur S., and Tandon V. - Benzimidazoles: Selective inhibitors of topoisomerase I with differential modes of action, Biochemistry 58 (6) (2018) 809-817. https://doi.org/10.1021/acs.biochem.8b01102. DOI: https://doi.org/10.1021/acs.biochem.8b01102
Kim J. S., Sun Q., Gatto B., Yu C., Liu A., Liu L. F. and LaVoie E. J. - Structure-activity relationships of benzimidazoles and related heterocycles as topoisomerase I poisons, Bioorg. Med. Chem. 4 (4) (1996) 621-630. https://doi.org/10.1016/0968-0896(96)000478. DOI: https://doi.org/10.1016/0968-0896(96)00047-8
Alpan A. S., Gunes H. S., and Topcu Z. - 1H-Benzimidazole derivatives as mammalian DNA topoisomerase I inhibitors, Acta Biochim. Pol. 54 (3) (2007) 561-565. https://doi.org/10.18388/abp.2007_3229. DOI: https://doi.org/10.18388/abp.2007_3229
Issar U., Arora R., Kumari T., and Kakkar R. - Combined pharmacophore-guided 3D-QSAR, molecular docking, and virtual screening on bis-benzimidazoles and ter-benzimidazoles as DNA–topoisomerase I poisons, Struct. Chem. 30 (4) (2019) 1185-1201. https://doi.org/10.1007/s11224-018-1257-3. DOI: https://doi.org/10.1007/s11224-018-1257-3
Akhtar M. J., Siddiqui A. A., Khan A. A., Ali Z., Dewangan R. P., Pasha S., and Yar M. S. - Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors, Eur. J. Med. Chem. 126 (2017) 853-869. https://doi.org/10.1016/j.ejmech.2016.12.014. DOI: https://doi.org/10.1016/j.ejmech.2016.12.014
Baig M. F., Shaik S. P., Nayak V. L., Alarifi A., and Kamal A. - Iodine-catalyzed Csp3-H functionalization of methylhetarenes: One-pot synthesis and cytotoxic evaluation of heteroarenyl-benzimidazoles and benzothiazole, Bioorg. Med. Chem. Lett. 27 (17) (2017) 4039-4043. https://doi.org/10.1016/j.bmcl.2017.07.051. DOI: https://doi.org/10.1016/j.bmcl.2017.07.051
Babu P. K., Ramadevi B., Poornachandra Y., and Kumar C. G. - Synthesis, antimicrobial, and anticancer evaluation of novel 2-(3-methylindolyl) benzimidazole derivatives, Med. Chem. Res. 23 (9) (2014) 3970-3978. https://doi.org/10.1007/s00044-014-0974-4. DOI: https://doi.org/10.1007/s00044-014-0974-4
Feng Y., Spezia M., Huang S., Yuan C., Zeng Z., Zhang L., Ji X., Liu W., Huang B., and Luo W. - Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis, Genes Dis. 5 (2) (2018) 77-106. https://doi.org/10.1016/j.gendis.2018.05.001. DOI: https://doi.org/10.1016/j.gendis.2018.05.001
Perin N., Bobanović K., Zlatar I., Jelić D., Kelava V., Koštrun S., Marković V. G., Brajša K. and Hranjec M. - Antiproliferative activity of amino substituted benzo [b] thieno [2, 3-b] pyrido [1, 2-a] benzimidazoles explored by 2D and 3D cell culture system, Eur. J. Med. Chem. 125 (2017) 722-735. https://doi.org/10.1016/j.ejmech.2016.09.084. DOI: https://doi.org/10.1016/j.ejmech.2016.09.084
Sharma P., Reddy T. S., Kumar N. P., Senwar K. R., Bhargava S. K., and Shankaraiah N. - Conventional and microwave-assisted synthesis of new 1H-benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold, Eur. J. Med. Chem. 138 (2017) 234-245. https://doi.org/10.1016/j.ejmech.2017.06.035. DOI: https://doi.org/10.1016/j.ejmech.2017.06.035
Sharma P., Reddy T. S., Thummuri D., Senwar K. R., Kumar N. P., Naidu V., Bhargava S. K., and Shankaraiah N. - Synthesis and biological evaluation of new benzimidazole-thiazolidinedione hybrids as potential cytotoxic and apoptosis inducing agents, Eur. J. Med. Chem. 124 (2016) 608-621. https://doi.org/10.1016/j.ejmech.2016.08.029. DOI: https://doi.org/10.1016/j.ejmech.2016.08.029
Sharma P., Thummuri D., Reddy T. S., Senwar K. R., Naidu V., Srinivasulu G., Bharghava S. K., and Shankaraiah N. - New (E)-1-alkyl-1H-benzo [d] imidazol-2-yl) methylene) indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies, Eur. J. Med. Chem. 122 (2016) 584-600. https://doi.org/10.1016/j.ejmech.2016.07.019. DOI: https://doi.org/10.1016/j.ejmech.2016.07.019
Ramya P. S., Angapelly S., Rani R. S., Digwal C. S., Kumar C. G., Babu B. N., Guntuku L., and Kamal A. - Hypervalent iodine (III) catalyzed rapid and efficient access to benzimidazoles, benzothiazoles and quinoxalines: Biological evaluation of some new benzimidazole-imidazo [1, 2-a] pyridine conjugates, Arab. J. Chem. 13 (1) (2020) 120-133. https://doi.org/10.1016/j.arabjc.2017.02.007. DOI: https://doi.org/10.1016/j.arabjc.2017.02.007
Thirusangu P., Vigneshwaran V., Ranganatha V. L., Avin B. V., Khanum S. A., Mahmood R., Jayashree K., and Prabhakar B. - A tumoural angiogenic gateway blocker, Benzophenone-1B represses the HIF-1α nuclear translocation and its target gene activation against neoplastic progression, Biochem. Pharmacol. 125 (2017) 26-40. https://doi.org/10.1016/j.bcp.2016.11.009. DOI: https://doi.org/10.1016/j.bcp.2016.11.009
Zhu W., Liu Y., Zhai X., Wang X., Zhu Y., Wu D., Zhou H., Gong P., and Zhao Y. - Design, synthesis and 3D-QSAR analysis of novel 2-hydrazinyl-4-morpholinothieno [3, 2-d] pyrimidine derivatives as potential antitumor agents, Eur. J. Med. Chem. 57 (2012) 162-175. https://doi.org/10.1016/j.ejmech.2012.09.002. DOI: https://doi.org/10.1016/j.ejmech.2012.09.002
Chemdraw, Version 19.1; PerkinElmer: Waltham, Massachusetts, United States, 2019.
Molecular Operating Environment (MOE), Version 2015.10; Chemical Computing Group Inc.: Montreal, QC, Canada, 2015.
Thai K. M., Bui Q. H., Tran T. D., and Huynh T. N. P. - QSAR modeling on benzo [c] phenanthridine analogues as topoisomerase I inhibitors and anti-cancer agents, Molecules 17 (5) (2012) 5690-5712. https://doi.org/10.3390/molecules17055690. DOI: https://doi.org/10.3390/molecules17055690
RapidMiner, Version 5.3.013; RapidMiner, Inc.: Boston, US, 2019.
Waikato Environment for Knowledge Analysis (Weka), Version 3.8; University of Waikato: New Zealand, 2019.
Sybyl-X Molecular Modeling Software Packages, Version 1.1; TRIPOS Associates, Inc.: Louis, USA, 2011.
LeadIT, Version 2.1.8; BioSolveIT-GmbH: Germany, 2013.
Hevener K. E., Zhao W., Ball D. M., Babaoglu K., Qi J., White S. W. and Lee R. E. - Validation of molecular docking programs for virtual screening against dihydropteroate synthase, J. Chem. Inf. Model. 49 (2) (2009) 444-460. https://doi.org/10.1021/ci800293n. DOI: https://doi.org/10.1021/ci800293n
Tran T.-S., Le M.-T., Tran T.-D. and Thai K.-M. - Design of Curcumin and Flavonoid Derivatives with Acetylcholinesterase and Beta-Secretase Inhibitory Activities Using in Silico Approaches, Molecules 25 (16) (2020) 3644. https://doi.org/10.3390/molecules25163644. DOI: https://doi.org/10.3390/molecules25163644
Accelrys Discovery Studio 4.0 Client, Dassault Systemes BIOVIA: Vélizy-Villacoublay, France, 2014.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.