QSAR modeling and molecular docking studies on benzimidazole derivatives as anticancer agents

Hoang Phuc Nguyen, Thi Kim Chi Huynh, Khac Minh Thai, Thi Kim Dung Hoang
Author affiliations


  • Hoang Phuc Nguyen Institute of Chemical Technology,Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Viet Nam
  • Thi Kim Chi Huynh Institute of Chemical Technology,Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-6214-8022
  • Khac Minh Thai Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Phar-macy at Ho Chi Minh City, 41-43 Dinh Tien Hoang, District 1, Ho Chi Minh City, Viet Nam
  • Thi Kim Dung Hoang Institute of Chemical Technology,Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Viet Nam




Benzimidazole, QSAR, anticancer, MDA-MB-231, molecular docking, topoisomerase I


Abstract. The triple-negative breast cancer cell line MDA-MB-231 has been known as one of the most tenacious cancer cancer cells and paid attention by many researchers. A two-dimension quantitative structure-activity relationship (2D-QSAR) model of 131 benzimidazole derivatives was developed to relate the chemical–biological interactions and predicted the half maximal inhibitory concentration (IC50) against MDA-MB-231 cell line. The 2D-QSAR model was obtained satisfactory internal and external validation parameters such as the square of correlation coefficient R2 = 0.904 and concordance correlation coefficient CCC = 0.867. The model was and applied on 35 synthesized benzimidazoles to predict IC50 values. The results showed that benzimidazoles with IC50 less than 50 µM displayed a quite similarity between predicted and experimental IC50 values (Ra2 = 0.924). The molecular docking study was investigated to clarify the binding mode of the most potential synthesized benzimidazoles (BLMM, and BL3H) into topoisomerase I-DNA complex. The docking results revealed that they intercalated and interacted to crucial amino acids in the binding site of complex by hydrogen bonds and hydrophobic interactions and compared to standard drug camptothecin.


Download data is not yet available.


Siegel R. L., Miller K. D., Goding Sauer A., Fedewa S. A., Butterly L. F., Anderson J. C., Cercek A., Smith R. A. and Jemal A. - Colorectal cancer statistics, 2020, CA: Cancer J. Clin. 70 (3) (2020) 145-164. https://doi.org/10.3322/caac.21601. https://doi.org/10.3322/caac.21601.">

Liu T., Song S., Wang X. and Hao J. - Small-molecule inhibitors of breast cancer-related targets: Potential therapeutic agents for breast cancer, Eur. J. Med. Chem. 210 (2020) 112954. https://doi.org/10.1016/j.ejmech.2020.112954. DOI: https://doi.org/10.1016/j.ejmech.2020.112954 https://doi.org/10.1016/j.ejmech.2020.112954.">

Kasmi R., Hadaji E., Bouachrine M., and Ouammou A. - QSAR and molecular docking study of quinazoline derivatives as anticancer agents using molecular descriptors, Mater. Today: Proc. 51 (5) (2020) 18821-1830. https://doi.org/10.1016/j.matpr.2020.05.283. DOI: https://doi.org/10.1016/j.matpr.2020.05.283 https://doi.org/10.1016/j.matpr.2020.05.283.">

Mohs R. C. and Greig N. H. - Drug discovery and development: Role of basic biological research, Alzheimers Dement. 3 (4) (2017) 651-657. https://doi.org/10.1016/ j.trci.2017.10.005. DOI: https://doi.org/10.1016/j.trci.2017.10.005 https://doi.org/10.1016/ j.trci.2017.10.005.">

Murgueitio M. S., Bermudez M., Mortier J., and Wolber G. - In silico virtual screening approaches for anti-viral drug discovery, Drug Discov. Today Technol. 9 (3) (2012) e219-e225. https://doi.org/10.1016/j.ddtec.2012.07.009. DOI: https://doi.org/10.1016/j.ddtec.2012.07.009 https://doi.org/10.1016/j.ddtec.2012.07.009.">

Ekins S., Mestres J., and Testa B. - In silico pharmacology for drug discovery: applications to targets and beyond, Br. J. Pharmacol. 152 (1) (2007) 21-37. https://doi.org/10.1038/sj.bjp.0707306. DOI: https://doi.org/10.1038/sj.bjp.0707306 https://doi.org/10.1038/sj.bjp.0707306.">

March-Vila E., Pinzi L., Sturm N., Tinivella A., Engkvist O., Chen H. and Rastelli G. - On the integration of in silico drug design methods for drug repurposing, Front. Pharmacol. 8 (2017) 298. https://doi.org/10.3389/fphar.2017.00298. DOI: https://doi.org/10.3389/fphar.2017.00298 https://doi.org/10.3389/fphar.2017.00298.">

Neves B. J., Braga R. C., Melo-Filho C. C., Moreira-Filho J. T., Muratov E. N. and Andrade C. H. - QSAR-based virtual screening: advances and applications in drug discovery, Front. Pharmacol. 9 (2018) 1275. https://doi.org/10.3389/fphar.2018.01275. DOI: https://doi.org/10.3389/fphar.2018.01275 https://doi.org/10.3389/fphar.2018.01275.">

Gardiner J. M., Loyns C. R., Burke A., Khan A. and Mahmood N. - Synthesis and HIV-1 inhibition of novel benzimidazole derivatives, Bioorg. Med. Chem. Lett. 5 (12) (1995) 1251-1254. https://doi.org/10.1016/0960-894X(95)00203-6. DOI: https://doi.org/10.1016/0960-894X(95)00203-6 https://doi.org/10.1016/0960-894X(95)00203-6.">

Kumar J. R., Jawahar L J. and Pathak D. - Synthesis of benzimidazole derivatives: as anti-hypertensive agents, J. Chem. 3 (4) (2006) 278-285. https://doi.org/10.1155/2006/765712. DOI: https://doi.org/10.1155/2006/765712 https://doi.org/10.1155/2006/765712.">

Starčević K., Kralj M., Ester K., Sabol I., Grce M., Pavelić K. and Karminski-Zamola G. - Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles, Bioorg. Med. Chem. 15 (13) (2007) 4419-4426. https://doi.org/10.1016/ j.bmc.2007.04.032. DOI: https://doi.org/10.1016/j.bmc.2007.04.032 https://doi.org/10.1016/ j.bmc.2007.04.032.">

Akhtar M. J., Khan A. A., Ali Z., Dewangan R. P., Rafi M., Hassan M. Q., Akhtar M. S., Siddiqui A. A., Partap S. and Pasha S. - Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors, Bioorg. Chem. 78 (2018) 158-169. https://doi.org/10.1016/j.bioorg.2018.03.002. DOI: https://doi.org/10.1016/j.bioorg.2018.03.002 https://doi.org/10.1016/j.bioorg.2018.03.002.">

Acar Çevik U., Sağlık B. N., Osmaniye D., Levent S., Kaya Çavuşoğlu B., Karaduman A. B., Atlı Eklioğlu Ö., Özkay Y. and Kaplancıklı Z. A. - Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole-1, 3, 4-oxadiazole derivatives as human topoisomerase types I poison, J. Enzyme Inhib. Med. Chem. 35 (1) (2020) 1657-1673. DOI: https://doi.org/10.1080/14756366.2020.1806831

Nguyen T. D. - A facile and efficient synthesis of benzimidazole as potential anticancer agents, J. Chem. Sci. 132 (1) (2020) 1-9. DOI: https://doi.org/10.1007/s12039-020-01783-4

Huynh T. K. C., Nguyen T. H. A., Nguyen T. C. T., and Hoang T. K. D. - Synthesis and insight into the structure–activity relationships of 2-phenylbenzimidazoles as prospective anticancer agents, RSC Adv. 10 (35) (2020) 20543-20551. https://doi.org/ 10.1039/D0RA02282A. DOI: https://doi.org/10.1039/D0RA02282A https://doi.org/ 10.1039/D0RA02282A.">

Wang J. C. - DNA topoisomerases, Annu. Rev. Biochem. 65 (1) (1996) 635-692. https://doi.org/10.1146/annurev.bi.65.070196.003223. DOI: https://doi.org/10.1146/annurev.bi.65.070196.003223 https://doi.org/10.1146/annurev.bi.65.070196.003223.">

Staker B. L., Feese M. D., Cushman M., Pommier Y., Zembower D., Stewart L., and Burgin A. B. - Structures of three classes of anticancer agents bound to the human topoisomerase I− DNA covalent complex, J. Med. Chem. 48 (7) (2005) 2336-2345. https://doi.org/10.1021/jm049146p. DOI: https://doi.org/10.1021/jm049146p https://doi.org/10.1021/jm049146p.">

Sheng C., Miao Z., and Zhang W. - New strategies in the discovery of novel non-camptothecin topoisomerase I inhibitors, Curr. Med. Chem. 18 (28) (2011) 4389-4409. https://doi.org/10.2174/092986711797200453. DOI: https://doi.org/10.2174/092986711797200453 https://doi.org/10.2174/092986711797200453.">

Bansal S., Sur S., and Tandon V. - Benzimidazoles: Selective inhibitors of topoisomerase I with differential modes of action, Biochemistry 58 (6) (2018) 809-817. https://doi.org/10.1021/acs.biochem.8b01102. DOI: https://doi.org/10.1021/acs.biochem.8b01102 https://doi.org/10.1021/acs.biochem.8b01102.">

Kim J. S., Sun Q., Gatto B., Yu C., Liu A., Liu L. F. and LaVoie E. J. - Structure-activity relationships of benzimidazoles and related heterocycles as topoisomerase I poisons, Bioorg. Med. Chem. 4 (4) (1996) 621-630. https://doi.org/10.1016/0968-0896(96)000478. DOI: https://doi.org/10.1016/0968-0896(96)00047-8 https://doi.org/10.1016/0968-0896(96)000478.">

Alpan A. S., Gunes H. S., and Topcu Z. - 1H-Benzimidazole derivatives as mammalian DNA topoisomerase I inhibitors, Acta Biochim. Pol. 54 (3) (2007) 561-565. https://doi.org/10.18388/abp.2007_3229. DOI: https://doi.org/10.18388/abp.2007_3229 https://doi.org/10.18388/abp.2007_3229.">

Issar U., Arora R., Kumari T., and Kakkar R. - Combined pharmacophore-guided 3D-QSAR, molecular docking, and virtual screening on bis-benzimidazoles and ter-benzimidazoles as DNA–topoisomerase I poisons, Struct. Chem. 30 (4) (2019) 1185-1201. https://doi.org/10.1007/s11224-018-1257-3. DOI: https://doi.org/10.1007/s11224-018-1257-3 https://doi.org/10.1007/s11224-018-1257-3.">

Akhtar M. J., Siddiqui A. A., Khan A. A., Ali Z., Dewangan R. P., Pasha S., and Yar M. S. - Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors, Eur. J. Med. Chem. 126 (2017) 853-869. https://doi.org/10.1016/j.ejmech.2016.12.014. DOI: https://doi.org/10.1016/j.ejmech.2016.12.014 https://doi.org/10.1016/j.ejmech.2016.12.014.">

Baig M. F., Shaik S. P., Nayak V. L., Alarifi A., and Kamal A. - Iodine-catalyzed Csp3-H functionalization of methylhetarenes: One-pot synthesis and cytotoxic evaluation of heteroarenyl-benzimidazoles and benzothiazole, Bioorg. Med. Chem. Lett. 27 (17) (2017) 4039-4043. https://doi.org/10.1016/j.bmcl.2017.07.051. DOI: https://doi.org/10.1016/j.bmcl.2017.07.051 https://doi.org/10.1016/j.bmcl.2017.07.051.">

Babu P. K., Ramadevi B., Poornachandra Y., and Kumar C. G. - Synthesis, antimicrobial, and anticancer evaluation of novel 2-(3-methylindolyl) benzimidazole derivatives, Med. Chem. Res. 23 (9) (2014) 3970-3978. https://doi.org/10.1007/s00044-014-0974-4. DOI: https://doi.org/10.1007/s00044-014-0974-4 https://doi.org/10.1007/s00044-014-0974-4.">

Feng Y., Spezia M., Huang S., Yuan C., Zeng Z., Zhang L., Ji X., Liu W., Huang B., and Luo W. - Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis, Genes Dis. 5 (2) (2018) 77-106. https://doi.org/10.1016/j.gendis.2018.05.001. DOI: https://doi.org/10.1016/j.gendis.2018.05.001 https://doi.org/10.1016/j.gendis.2018.05.001.">

Perin N., Bobanović K., Zlatar I., Jelić D., Kelava V., Koštrun S., Marković V. G., Brajša K. and Hranjec M. - Antiproliferative activity of amino substituted benzo [b] thieno [2, 3-b] pyrido [1, 2-a] benzimidazoles explored by 2D and 3D cell culture system, Eur. J. Med. Chem. 125 (2017) 722-735. https://doi.org/10.1016/j.ejmech.2016.09.084. DOI: https://doi.org/10.1016/j.ejmech.2016.09.084 https://doi.org/10.1016/j.ejmech.2016.09.084.">

Sharma P., Reddy T. S., Kumar N. P., Senwar K. R., Bhargava S. K., and Shankaraiah N. - Conventional and microwave-assisted synthesis of new 1H-benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold, Eur. J. Med. Chem. 138 (2017) 234-245. https://doi.org/10.1016/j.ejmech.2017.06.035. DOI: https://doi.org/10.1016/j.ejmech.2017.06.035 https://doi.org/10.1016/j.ejmech.2017.06.035.">

Sharma P., Reddy T. S., Thummuri D., Senwar K. R., Kumar N. P., Naidu V., Bhargava S. K., and Shankaraiah N. - Synthesis and biological evaluation of new benzimidazole-thiazolidinedione hybrids as potential cytotoxic and apoptosis inducing agents, Eur. J. Med. Chem. 124 (2016) 608-621. https://doi.org/10.1016/j.ejmech.2016.08.029. DOI: https://doi.org/10.1016/j.ejmech.2016.08.029 https://doi.org/10.1016/j.ejmech.2016.08.029.">

Sharma P., Thummuri D., Reddy T. S., Senwar K. R., Naidu V., Srinivasulu G., Bharghava S. K., and Shankaraiah N. - New (E)-1-alkyl-1H-benzo [d] imidazol-2-yl) methylene) indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies, Eur. J. Med. Chem. 122 (2016) 584-600. https://doi.org/10.1016/j.ejmech.2016.07.019. DOI: https://doi.org/10.1016/j.ejmech.2016.07.019 https://doi.org/10.1016/j.ejmech.2016.07.019.">

Ramya P. S., Angapelly S., Rani R. S., Digwal C. S., Kumar C. G., Babu B. N., Guntuku L., and Kamal A. - Hypervalent iodine (III) catalyzed rapid and efficient access to benzimidazoles, benzothiazoles and quinoxalines: Biological evaluation of some new benzimidazole-imidazo [1, 2-a] pyridine conjugates, Arab. J. Chem. 13 (1) (2020) 120-133. https://doi.org/10.1016/j.arabjc.2017.02.007. DOI: https://doi.org/10.1016/j.arabjc.2017.02.007 https://doi.org/10.1016/j.arabjc.2017.02.007.">

Thirusangu P., Vigneshwaran V., Ranganatha V. L., Avin B. V., Khanum S. A., Mahmood R., Jayashree K., and Prabhakar B. - A tumoural angiogenic gateway blocker, Benzophenone-1B represses the HIF-1α nuclear translocation and its target gene activation against neoplastic progression, Biochem. Pharmacol. 125 (2017) 26-40. https://doi.org/10.1016/j.bcp.2016.11.009. DOI: https://doi.org/10.1016/j.bcp.2016.11.009 https://doi.org/10.1016/j.bcp.2016.11.009.">

Zhu W., Liu Y., Zhai X., Wang X., Zhu Y., Wu D., Zhou H., Gong P., and Zhao Y. - Design, synthesis and 3D-QSAR analysis of novel 2-hydrazinyl-4-morpholinothieno [3, 2-d] pyrimidine derivatives as potential antitumor agents, Eur. J. Med. Chem. 57 (2012) 162-175. https://doi.org/10.1016/j.ejmech.2012.09.002. DOI: https://doi.org/10.1016/j.ejmech.2012.09.002 https://doi.org/10.1016/j.ejmech.2012.09.002.">

Chemdraw, Version 19.1; PerkinElmer: Waltham, Massachusetts, United States, 2019.

Molecular Operating Environment (MOE), Version 2015.10; Chemical Computing Group Inc.: Montreal, QC, Canada, 2015.

Thai K. M., Bui Q. H., Tran T. D., and Huynh T. N. P. - QSAR modeling on benzo [c] phenanthridine analogues as topoisomerase I inhibitors and anti-cancer agents, Molecules 17 (5) (2012) 5690-5712. https://doi.org/10.3390/molecules17055690. DOI: https://doi.org/10.3390/molecules17055690 https://doi.org/10.3390/molecules17055690.">

RapidMiner, Version 5.3.013; RapidMiner, Inc.: Boston, US, 2019.

Waikato Environment for Knowledge Analysis (Weka), Version 3.8; University of Waikato: New Zealand, 2019.

Sybyl-X Molecular Modeling Software Packages, Version 1.1; TRIPOS Associates, Inc.: Louis, USA, 2011.

LeadIT, Version 2.1.8; BioSolveIT-GmbH: Germany, 2013.

Hevener K. E., Zhao W., Ball D. M., Babaoglu K., Qi J., White S. W. and Lee R. E. - Validation of molecular docking programs for virtual screening against dihydropteroate synthase, J. Chem. Inf. Model. 49 (2) (2009) 444-460. https://doi.org/10.1021/ci800293n. DOI: https://doi.org/10.1021/ci800293n https://doi.org/10.1021/ci800293n.">

Tran T.-S., Le M.-T., Tran T.-D. and Thai K.-M. - Design of Curcumin and Flavonoid Derivatives with Acetylcholinesterase and Beta-Secretase Inhibitory Activities Using in Silico Approaches, Molecules 25 (16) (2020) 3644. https://doi.org/10.3390/molecules25163644. DOI: https://doi.org/10.3390/molecules25163644 https://doi.org/10.3390/molecules25163644.">

Accelrys Discovery Studio 4.0 Client, Dassault Systemes BIOVIA: Vélizy-Villacoublay, France, 2014.




How to Cite

H. P. Nguyen, T. K. C. Huynh, K. M. Thai, and T. K. D. Hoang, “QSAR modeling and molecular docking studies on benzimidazole derivatives as anticancer agents”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 993–1004, Dec. 2022.



Natural Products