Synthesis and characterization of PMMA-grafted-ZrO2 hybrid nanoparticles
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16991Keywords:
nanocrystals, grafting yield, PMMA-grafted ZrO2, hybrid, graft polymerizationAbstract
In this study, we reported a facile synthesis and the characterization of PMMA-grafted ZrO2 hybrid nanoparticles from original ZrO2 (oZrO2) nanoparticles. The synthesis process included of three steps: (i) modification of nano ZrO2 with a vinyl silane agent, (ii) graft copolymerization of methyl methacrylate (MMA) monomers and modified ZrO2 (mZrO2) nanoparticles, and (iii) extraction of homo PMMA to obtain the final product of PMMA-g-ZrO2 (gZrO2) nanoparticles. Fourier transform infrared (FTIR) spectra and thermogravimetric analysis (TGA) of mZrO2, oZrO2, and gZrO2 indicated that the silane coupling agent was grafted onto oZrO2 nanoparticles. FTIR spectra of gZrO2 indicated PMMA had been successfully grafted onto the surface of ZrO2 nanoparticles. Using TGA method, the PMMA grafting content onto ZrO2 nanoparticles was evaluated as 9.03 wt.%. The electron microscopy (SEM) images of gZrO2, mZrO2, and oZrO2 indicated that their primary particle size and shape were almost unchanged after modification processes, their particle size was in the range from 50 nm to 140 nm. XRD analysis showed the monoclinic crystalline structure of three kinds of ZrO2 nanoparticles (nanocrystals). The organic gZrO2 nanoparticles can be a better candidate as an opacifier additive for polymer nanocomposites or acrylic bone cement.
Downloads
References
Wang B., Wilkes G. L. - New Ti-PTMO and Zr-PTMO ceramer hybrid materials prepared by the sol gel method: Synthesis and characterization,. Journal of Polymer Science Part A: Polymer Chemistry 29 (1991) 905-909. DOI: https://doi.org/10.1002/pola.1991.080290616
Rehman H. U., Sarwar M. I., Ahmad Z., Krug H., Schmidt H. - Synthesis and characterization of novel aramid-zirconium oxide micro-composites. Journal of Non-Crystalline Solids 211 (1997) 105-111. DOI: https://doi.org/10.1016/S0022-3093(96)00614-X
Di Maggio R., Fambri L., Guerriero A. - Zirconium Alkoxides as Components of Hybrid Inorganic−Organic Macromolecular Materials,. Chemistry of Materials 10 (1998) 1777-1784. DOI: https://doi.org/10.1021/cm970694j
Di Maggio R., Fambri L., Mustarelli P., Campostrini R. - Physico-chemical characterization of hybrid polymers obtained by 2-hydroxyethyl(methacrylate) and alkoxides of zirconium,. Polymer, 44 (2003) 7311-7320. DOI: https://doi.org/10.1016/j.polymer.2003.09.025
Heimann R. B., Lehmann H. D.- Bioceramics – A Historical Perspective; (2015) 1-10. DOI: https://doi.org/10.1002/9783527682294.ch1
Dion I., Bordenave L., Lefebvre F., Bareille R., Baquey C., Monties J. R., Havlik P. - Physico-chemistry and cytotoxicity of ceramics,. Journal of Materials Science: Materials in Medicine 5 (1994) 18-24. DOI: https://doi.org/10.1007/BF00121148
Torricelli P., Verné E., Brovarone C. V., Appendino P., Rustichelli F., Krajewski A., Ravaglioli A., Pierini G., Fini M., Giavaresi G., Giardino R. - Biological glass coating on ceramic materials:: in vitro evaluation using primary osteoblast cultures from healthy and osteopenic rat bone,. Biomaterials 22 (2001) 2535-2543. DOI: https://doi.org/10.1016/S0142-9612(00)00444-0
Lohmann C. H., Dean D. D., Köster G., Casasola D., Buchhorn G. H., Fink U., Schwartz Z., Boyan B. D. - Ceramic and PMMA particles differentially affect osteoblast phenotype,. Biomaterials 23 (2002) 1855-1863. DOI: https://doi.org/10.1016/S0142-9612(01)00312-X
Covacci V., Bruzzese N., Maccauro G., Andreassi C., Ricci G. A., Piconi C., Marmo E., Burger W., Cittadini A. - In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic,. Biomaterials 20 (1999) 371-376. DOI: https://doi.org/10.1016/S0142-9612(98)00182-3
Silva V. V., Lameiras F. S., Lobato Z. I. P. - Biological reactivity of zirconia–hydroxyapatite composites. Journal of Biomedical Materials Research 63 (2002) 583-590. DOI: https://doi.org/10.1002/jbm.10308
Zidan S. I. H.-Effects of Zirconia Nanoparticles on the Physico-Mechanical Properties of High-impact Heat-Cured Acrylic Resin Denture Base,. The University of Manchester 2020.
Wang H., Xu P., Zhong W., Shen L., Du Q. - Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polymer Degradation and Stability 87 (2005) 319-327. DOI: https://doi.org/10.1016/j.polymdegradstab.2004.08.015
Bao L., Li X., Wang Z., Li J. - Fabrication and characterazation of functionalized zirconia microparticles and zirconia-containing bone cement,. Materials Research Express 5 (2018) 075404. DOI: https://doi.org/10.1088/2053-1591/aacec9
Otsuka T., Chujo Y. - Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals,. Polymer Journal 42 (2010) 58-65. DOI: https://doi.org/10.1038/pj.2009.309
He W., Guo Z., Pu Y., Yan L., Si W. - Polymer coating on the surface of zirconia nanoparticles by inductively coupled plasma polymerization,. Applied Physics Letters 85 (2004) 896-898. DOI: https://doi.org/10.1063/1.1778470
Sayılkan F., Asiltürk M., Burunkaya E., Arpaç E. - Hydrothermal synthesis and characterization of nanocrystalline ZrO2 and surface modification with 2-acetoacetoxyethyl methacrylate,. Journal of Sol-Gel Science and Technology 51 (2009) 182-189. DOI: https://doi.org/10.1007/s10971-009-1970-x
Wang J., Shi T. J., Jiang X. C. - Synthesis and Characterization of Core-shell ZrO2/PAAEM/PS Nanoparticles,. Nanoscale Research Letters 4 (2008) 240. DOI: https://doi.org/10.1007/s11671-008-9232-3
Li D., Yao J., Liu B., Sun H., van Agtmaal S., Feng C. - Preparation and characterization of surface grafting polymer of ZrO2 membrane and ZrO2 powder,. Applied Surface Science 471 (2019) 394-402. DOI: https://doi.org/10.1016/j.apsusc.2018.12.009
Tham D. Q., Huynh M. D., Linh N. T. D., Van D. T. C., Cong D. V., Dung N. T. K., Trang N. T. T., Lam P. V., Hoang T., Lam T. D. - PMMA Bone Cements Modified with Silane-Treated and PMMA-Grafted Hydroxyapatite Nanocrystals: Preparation and Characterization,. Polymers 13 (2021) 3860. DOI: https://doi.org/10.3390/polym13223860
Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M. R. - Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems,. Pharmaceutics 10 (2018) 57. DOI: https://doi.org/10.3390/pharmaceutics10020057
International Organisation for Standardisation. -, 1996.
Pecora R. - Dynamic Light Scattering Measurement of Nanometer Particles in Liquids,. Journal of Nanoparticle Research 2 (2000) 123-131. DOI: https://doi.org/10.1023/A:1010067107182
Johnson C. S., Gabriel D. A. - Laser light scattering,; CRC Press (2018) 177-248. DOI: https://doi.org/10.1201/9781351076814-5
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.