Synthesis and characterization of PMMA-grafted-ZrO2 hybrid nanoparticles

Nguyen Thi Dieu Linh, Nguyen Thi Kim Dung, Dam Xuan Thang, Do Quang Tham
Author affiliations

Authors

  • Nguyen Thi Dieu Linh Graduated, University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Kim Dung Nationnal Academy of Education Management, 31 Phan Dinh Giot, Thanh Xuan, Ha Noi, Viet Nam
  • Dam Xuan Thang Faculty of Chemical Technology, Hanoi University of Industry, Campus B5, Tay Tuu, North Tu Liem, Ha Noi, Viet Nam
  • Do Quang Tham Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0001-5480-4360

DOI:

https://doi.org/10.15625/2525-2518/16991

Keywords:

nanocrystals, grafting yield, PMMA-grafted ZrO2, hybrid, graft polymerization

Abstract

In this study, we reported a facile synthesis and the characterization of PMMA-grafted ZrO2 hybrid nanoparticles from original ZrO2 (oZrO2) nanoparticles. The synthesis process included of three steps: (i) modification of nano ZrO2 with a vinyl silane agent, (ii) graft copolymerization of methyl methacrylate (MMA) monomers and modified ZrO2 (mZrO2) nanoparticles, and (iii) extraction of homo PMMA to obtain the final product of PMMA-g-ZrO2 (gZrO2) nanoparticles. Fourier transform infrared (FTIR) spectra and thermogravimetric analysis (TGA) of mZrO2, oZrO2, and gZrO2 indicated that the silane coupling agent was grafted onto oZrO2 nanoparticles. FTIR spectra of gZrO2 indicated PMMA had been successfully grafted onto the surface of ZrO2 nanoparticles. Using TGA method, the PMMA grafting content onto ZrO2 nanoparticles was evaluated as 9.03 wt.%. The electron microscopy (SEM) images of gZrO2, mZrO2, and oZrO2 indicated that their primary particle size and shape were almost unchanged after modification processes, their particle size was in the range from 50 nm to 140  nm. XRD analysis showed the monoclinic crystalline structure of three kinds of ZrO2 nanoparticles (nanocrystals). The organic gZrO2 nanoparticles can be a better candidate as an opacifier additive for polymer nanocomposites or acrylic bone cement.

Downloads

Download data is not yet available.

References

Wang B., Wilkes G. L. - New Ti-PTMO and Zr-PTMO ceramer hybrid materials prepared by the sol gel method: Synthesis and characterization,. Journal of Polymer Science Part A: Polymer Chemistry 29 (1991) 905-909. DOI: https://doi.org/10.1002/pola.1991.080290616

Rehman H. U., Sarwar M. I., Ahmad Z., Krug H., Schmidt H. - Synthesis and characterization of novel aramid-zirconium oxide micro-composites. Journal of Non-Crystalline Solids 211 (1997) 105-111. DOI: https://doi.org/10.1016/S0022-3093(96)00614-X

Di Maggio R., Fambri L., Guerriero A. - Zirconium Alkoxides as Components of Hybrid Inorganic−Organic Macromolecular Materials,. Chemistry of Materials 10 (1998) 1777-1784. DOI: https://doi.org/10.1021/cm970694j

Di Maggio R., Fambri L., Mustarelli P., Campostrini R. - Physico-chemical characterization of hybrid polymers obtained by 2-hydroxyethyl(methacrylate) and alkoxides of zirconium,. Polymer, 44 (2003) 7311-7320. DOI: https://doi.org/10.1016/j.polymer.2003.09.025

Heimann R. B., Lehmann H. D.- Bioceramics – A Historical Perspective; (2015) 1-10. DOI: https://doi.org/10.1002/9783527682294.ch1

Dion I., Bordenave L., Lefebvre F., Bareille R., Baquey C., Monties J. R., Havlik P. - Physico-chemistry and cytotoxicity of ceramics,. Journal of Materials Science: Materials in Medicine 5 (1994) 18-24. DOI: https://doi.org/10.1007/BF00121148

Torricelli P., Verné E., Brovarone C. V., Appendino P., Rustichelli F., Krajewski A., Ravaglioli A., Pierini G., Fini M., Giavaresi G., Giardino R. - Biological glass coating on ceramic materials:: in vitro evaluation using primary osteoblast cultures from healthy and osteopenic rat bone,. Biomaterials 22 (2001) 2535-2543. DOI: https://doi.org/10.1016/S0142-9612(00)00444-0

Lohmann C. H., Dean D. D., Köster G., Casasola D., Buchhorn G. H., Fink U., Schwartz Z., Boyan B. D. - Ceramic and PMMA particles differentially affect osteoblast phenotype,. Biomaterials 23 (2002) 1855-1863. DOI: https://doi.org/10.1016/S0142-9612(01)00312-X

Covacci V., Bruzzese N., Maccauro G., Andreassi C., Ricci G. A., Piconi C., Marmo E., Burger W., Cittadini A. - In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic,. Biomaterials 20 (1999) 371-376. DOI: https://doi.org/10.1016/S0142-9612(98)00182-3

Silva V. V., Lameiras F. S., Lobato Z. I. P. - Biological reactivity of zirconia–hydroxyapatite composites. Journal of Biomedical Materials Research 63 (2002) 583-590. DOI: https://doi.org/10.1002/jbm.10308

Zidan S. I. H.-Effects of Zirconia Nanoparticles on the Physico-Mechanical Properties of High-impact Heat-Cured Acrylic Resin Denture Base,. The University of Manchester 2020.

Wang H., Xu P., Zhong W., Shen L., Du Q. - Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polymer Degradation and Stability 87 (2005) 319-327. DOI: https://doi.org/10.1016/j.polymdegradstab.2004.08.015

Bao L., Li X., Wang Z., Li J. - Fabrication and characterazation of functionalized zirconia microparticles and zirconia-containing bone cement,. Materials Research Express 5 (2018) 075404. DOI: https://doi.org/10.1088/2053-1591/aacec9

Otsuka T., Chujo Y. - Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals,. Polymer Journal 42 (2010) 58-65. DOI: https://doi.org/10.1038/pj.2009.309

He W., Guo Z., Pu Y., Yan L., Si W. - Polymer coating on the surface of zirconia nanoparticles by inductively coupled plasma polymerization,. Applied Physics Letters 85 (2004) 896-898. DOI: https://doi.org/10.1063/1.1778470

Sayılkan F., Asiltürk M., Burunkaya E., Arpaç E. - Hydrothermal synthesis and characterization of nanocrystalline ZrO2 and surface modification with 2-acetoacetoxyethyl methacrylate,. Journal of Sol-Gel Science and Technology 51 (2009) 182-189. DOI: https://doi.org/10.1007/s10971-009-1970-x

Wang J., Shi T. J., Jiang X. C. - Synthesis and Characterization of Core-shell ZrO2/PAAEM/PS Nanoparticles,. Nanoscale Research Letters 4 (2008) 240. DOI: https://doi.org/10.1007/s11671-008-9232-3

Li D., Yao J., Liu B., Sun H., van Agtmaal S., Feng C. - Preparation and characterization of surface grafting polymer of ZrO2 membrane and ZrO2 powder,. Applied Surface Science 471 (2019) 394-402. DOI: https://doi.org/10.1016/j.apsusc.2018.12.009

Tham D. Q., Huynh M. D., Linh N. T. D., Van D. T. C., Cong D. V., Dung N. T. K., Trang N. T. T., Lam P. V., Hoang T., Lam T. D. - PMMA Bone Cements Modified with Silane-Treated and PMMA-Grafted Hydroxyapatite Nanocrystals: Preparation and Characterization,. Polymers 13 (2021) 3860. DOI: https://doi.org/10.3390/polym13223860

Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M. R. - Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems,. Pharmaceutics 10 (2018) 57. DOI: https://doi.org/10.3390/pharmaceutics10020057

International Organisation for Standardisation. -, 1996.

Pecora R. - Dynamic Light Scattering Measurement of Nanometer Particles in Liquids,. Journal of Nanoparticle Research 2 (2000) 123-131. DOI: https://doi.org/10.1023/A:1010067107182

Johnson C. S., Gabriel D. A. - Laser light scattering,; CRC Press (2018) 177-248. DOI: https://doi.org/10.1201/9781351076814-5

Downloads

Published

15-12-2023

How to Cite

[1]
L. Nguyen Thi Dieu, D. Nguyen Thi Kim, T. Dam Xuan, and T. Do Quang, “Synthesis and characterization of PMMA-grafted-ZrO2 hybrid nanoparticles ”, Vietnam J. Sci. Technol., vol. 61, no. 6, pp. 1010–1018, Dec. 2023.

Issue

Section

Materials