Synthesis and characterization of PMMA-grafted-ZrO2 hybrid nanoparticles

Nguyen Thi Dieu Linh, Nguyen Thi Kim Dung, Dam Xuan Thang, Do Quang Tham
Author affiliations


  • Nguyen Thi Dieu Linh Graduated, University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Kim Dung Nationnal Academy of Education Management, 31 Phan Dinh Giot, Thanh Xuan, Ha Noi, Viet Nam
  • Dam Xuan Thang Faculty of Chemical Technology, Hanoi University of Industry, Campus B5, Tay Tuu, North Tu Liem, Ha Noi, Viet Nam
  • Do Quang Tham Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam



nanocrystals, grafting yield, PMMA-grafted ZrO2, hybrid, graft polymerization


In this study, we reported a facile synthesis and the characterization of PMMA-grafted ZrO2 hybrid nanoparticles from original ZrO2 (oZrO2) nanoparticles. The synthesis process included of three steps: (i) modification of nano ZrO2 with a vinyl silane agent, (ii) graft copolymerization of methyl methacrylate (MMA) monomers and modified ZrO2 (mZrO2) nanoparticles, and (iii) extraction of homo PMMA to obtain the final product of PMMA-g-ZrO2 (gZrO2) nanoparticles. Fourier transform infrared (FTIR) spectra and thermogravimetric analysis (TGA) of mZrO2, oZrO2, and gZrO2 indicated that the silane coupling agent was grafted onto oZrO2 nanoparticles. FTIR spectra of gZrO2 indicated PMMA had been successfully grafted onto the surface of ZrO2 nanoparticles. Using TGA method, the PMMA grafting content onto ZrO2 nanoparticles was evaluated as 9.03 wt.%. The electron microscopy (SEM) images of gZrO2, mZrO2, and oZrO2 indicated that their primary particle size and shape were almost unchanged after modification processes, their particle size was in the range from 50 nm to 140  nm. XRD analysis showed the monoclinic crystalline structure of three kinds of ZrO2 nanoparticles (nanocrystals). The organic gZrO2 nanoparticles can be a better candidate as an opacifier additive for polymer nanocomposites or acrylic bone cement.


Download data is not yet available.


Wang B., Wilkes G. L. - New Ti-PTMO and Zr-PTMO ceramer hybrid materials prepared by the sol gel method: Synthesis and characterization,. Journal of Polymer Science Part A: Polymer Chemistry 29 (1991) 905-909. DOI:

Rehman H. U., Sarwar M. I., Ahmad Z., Krug H., Schmidt H. - Synthesis and characterization of novel aramid-zirconium oxide micro-composites. Journal of Non-Crystalline Solids 211 (1997) 105-111. DOI:

Di Maggio R., Fambri L., Guerriero A. - Zirconium Alkoxides as Components of Hybrid Inorganic−Organic Macromolecular Materials,. Chemistry of Materials 10 (1998) 1777-1784. DOI:

Di Maggio R., Fambri L., Mustarelli P., Campostrini R. - Physico-chemical characterization of hybrid polymers obtained by 2-hydroxyethyl(methacrylate) and alkoxides of zirconium,. Polymer, 44 (2003) 7311-7320. DOI:

Heimann R. B., Lehmann H. D.- Bioceramics – A Historical Perspective; (2015) 1-10. DOI:

Dion I., Bordenave L., Lefebvre F., Bareille R., Baquey C., Monties J. R., Havlik P. - Physico-chemistry and cytotoxicity of ceramics,. Journal of Materials Science: Materials in Medicine 5 (1994) 18-24. DOI:

Torricelli P., Verné E., Brovarone C. V., Appendino P., Rustichelli F., Krajewski A., Ravaglioli A., Pierini G., Fini M., Giavaresi G., Giardino R. - Biological glass coating on ceramic materials:: in vitro evaluation using primary osteoblast cultures from healthy and osteopenic rat bone,. Biomaterials 22 (2001) 2535-2543. DOI:

Lohmann C. H., Dean D. D., Köster G., Casasola D., Buchhorn G. H., Fink U., Schwartz Z., Boyan B. D. - Ceramic and PMMA particles differentially affect osteoblast phenotype,. Biomaterials 23 (2002) 1855-1863. DOI:

Covacci V., Bruzzese N., Maccauro G., Andreassi C., Ricci G. A., Piconi C., Marmo E., Burger W., Cittadini A. - In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic,. Biomaterials 20 (1999) 371-376. DOI:

Silva V. V., Lameiras F. S., Lobato Z. I. P. - Biological reactivity of zirconia–hydroxyapatite composites. Journal of Biomedical Materials Research 63 (2002) 583-590. DOI:

Zidan S. I. H.-Effects of Zirconia Nanoparticles on the Physico-Mechanical Properties of High-impact Heat-Cured Acrylic Resin Denture Base,. The University of Manchester 2020.

Wang H., Xu P., Zhong W., Shen L., Du Q. - Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polymer Degradation and Stability 87 (2005) 319-327. DOI:

Bao L., Li X., Wang Z., Li J. - Fabrication and characterazation of functionalized zirconia microparticles and zirconia-containing bone cement,. Materials Research Express 5 (2018) 075404. DOI:

Otsuka T., Chujo Y. - Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals,. Polymer Journal 42 (2010) 58-65. DOI:

He W., Guo Z., Pu Y., Yan L., Si W. - Polymer coating on the surface of zirconia nanoparticles by inductively coupled plasma polymerization,. Applied Physics Letters 85 (2004) 896-898. DOI:

Sayılkan F., Asiltürk M., Burunkaya E., Arpaç E. - Hydrothermal synthesis and characterization of nanocrystalline ZrO2 and surface modification with 2-acetoacetoxyethyl methacrylate,. Journal of Sol-Gel Science and Technology 51 (2009) 182-189. DOI:

Wang J., Shi T. J., Jiang X. C. - Synthesis and Characterization of Core-shell ZrO2/PAAEM/PS Nanoparticles,. Nanoscale Research Letters 4 (2008) 240. DOI:

Li D., Yao J., Liu B., Sun H., van Agtmaal S., Feng C. - Preparation and characterization of surface grafting polymer of ZrO2 membrane and ZrO2 powder,. Applied Surface Science 471 (2019) 394-402. DOI:

Tham D. Q., Huynh M. D., Linh N. T. D., Van D. T. C., Cong D. V., Dung N. T. K., Trang N. T. T., Lam P. V., Hoang T., Lam T. D. - PMMA Bone Cements Modified with Silane-Treated and PMMA-Grafted Hydroxyapatite Nanocrystals: Preparation and Characterization,. Polymers 13 (2021) 3860. DOI:

Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M. R. - Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems,. Pharmaceutics 10 (2018) 57. DOI:

International Organisation for Standardisation. -, 1996.

Pecora R. - Dynamic Light Scattering Measurement of Nanometer Particles in Liquids,. Journal of Nanoparticle Research 2 (2000) 123-131. DOI:

Johnson C. S., Gabriel D. A. - Laser light scattering,; CRC Press (2018) 177-248. DOI:




How to Cite

L. Nguyen Thi Dieu, D. Nguyen Thi Kim, T. Dam Xuan, and T. Do Quang, “Synthesis and characterization of PMMA-grafted-ZrO2 hybrid nanoparticles ”, Vietnam J. Sci. Technol., vol. 61, no. 6, pp. 1010–1018, Dec. 2023.