Control system architecture of an intelligent humanoid robot

Dinh-Quan Nguyen, Ha Huy Hung, Dinh-Son Le, Van-An Tran, The-Hung Nguyen, Viet-Linh Cao
Author affiliations


  • Dinh-Quan Nguyen Faculty of Aerospace Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem, Ha Noi, Viet Nam
  • Ha Huy Hung 2Faculty of Aerospace Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem, Ha Noi, Viet Nam
  • Dinh-Son Le Faculty of Information Technology, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem, Ha Noi, Viet Nam
  • Van-An Tran Faculty of Information Technology, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem, Ha Noi, Viet Nam
  • The-Hung Nguyen Faculty of Technical Command and Staff, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem, Ha Noi, Viet Nam
  • Viet-Linh Cao 4Institute of Radar, Military Institute of Science and Technology, 17 Hoang Sam, Cau Giay, Ha Noi, Viet Nam



humanoid robots, control system architecture, social robots


This paper presents the hardware and control software architectures of an intelligent humanoid robot. The robot has a mobile base consists of three omnidirectional wheels that allows it to move freely with three degree-of-freedom (DOF), two 6-DOF arms and 3-DOF neck and head that allows it to perform most of the common movements of human. Detail hardware components are given to show our mechanical design solution of the robot. The control software structure of the robotic system is constructed in the robot operating system (ROS) framework which is mainly used as a bridge to connect the control modules and various peripheral devices to ease our robot system task management. We have also shown the detail structure of the robot control system which consists of all key control  modules which enable the robot functions: from upper level with AI-based techniques such as image and sound processing to middle level with the robot motion controllers and then to the lower level with the management of atuators and sensors. The proposed architecture is being developed and tested on a real humanoid robot prototype called Bonbon to support Enghlish teaching in elementary schools.


Download data is not yet available.


Arkin R. - Behavior-Based Robotics, MIT Press, USA, 1998.

Firby R. J. - Adaptive Execution in Complex Dynamic Worlds, Ph.D. Thesis, Yale Univ., New Haven, 1989.

Firby R. J. - Task networks for controlling continuous processes, Proc. 2nd Int. Conf. AI Plan. Syst., 1994.

Bonasso R. P. - Integrating reaction plans and layered competences through synchronous control, Proc. Int. Joint Conf. Artif. Intel., 1991.

Rosenschein S. J., Kaelbling L. P. - The synthesis of digital machines with provable epistemic properties, Proc. Conf. Theor. Asp. Reas. Knowl., 1998.

Kaelbling L. P. - Goals as parallel program specifications, Proc. 6th Natl. Conf. Artif. Intel., 1988.

Kaelbling L. P. - Compiling operator descriptions into reactive strategies using goal regression, Tech. Rep., TR90-10, Teleos Res., Palo Alto, 1990.

Bonasso R. P., Firby R. J., Gat E., Kortenkamp D., Miller D. P., Slack M.G. - Experiences with an architecture for intelligent, reactive agents, J. Exp.Theor. Artif. Intell. 9(2/3), 237–256, 1997. DOI:

Gat E. - Integrating Planning and reacting in a heterogeneous asynchronous architecture for controlling real-world mobile robots, Proc. Natl. Conf. Artif. Intel. (AAAI), 1992.

Saridis G.N., Architectures for intelligent controls, Intelligent Control Systems: Theory and Applications, ed. by S. Gupta , IEEE Press, Piscataway, 1995.

Alami R., Chatila R., Fleury S., Ghallab M., Ingrand F. - An architecture for autonomy, Int.J. Robot. Res. 17(4), 315–337, 1998. DOI:

Stanford Artificial Intelligence Laboratory et al. - Robotic Operating System, 2018. Available at:">

Wisama K., Jean-Francois K. - Minimum operations and minimum parameters of the dynamic model of tree structure robots, IEEE Journal of Robotics and Automation, RA-3(6) (1987). DOI:">

Hirose M., Ogawa K. – Honda humanoid robots development, Philos. Trans. Ser. A Math. Phys. Eng. Sci. 365(1850), 2007. DOI:

Sakagami Y., Watanabe R., Aoyama C., Matsunaga S., Higaki N., Fujimura K. – The intelligent ASIMO: system overview and integration, IEEE/RSJ International Conference on Intelligent Robots and System, 3, 2478-2483, IEEE, 2002.

Park I.-W., Kim J.-Y., Lee J., Oh J.-H. – Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot – 3: HUBO), 5th IEEE-RAS International Conference on Humanoid Robots, 321-326, 2005.

Twan K., Sylvain B., Gray T., Tomas D. B., Tingfan W., Jesper S., Johannes E. and Jerry P. – Design of a Momentum-Based Control Framework and Application to the Humanoid Robot Atlas, International Journal of Humanoid Robotics, 13(01), 2016. DOI:">

Leobardo C., Oscar E. C.-E., Alexander G. L., Eduardo J. B.-C. – Stabilization method for dynamic gait in bipedal walking robots, IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 2016.

Softbank robotics – pepper robot, 2018.">

Tanaka F., Isshiki K., Takahashi F., Uekusa M., Sei R., Hayashi K. – Pepper learns together with children: development of an educational application, 2015IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 270-275, 2015. DOI:

Perera V., Pereira T., Connell J., Veloso M. M. – Setting up pepper for autonomous navigation and personalized interaction with users, CoRR abs/1704.04797, 2017.

Softbank robotics – naoqi framework, 2018.">




How to Cite

N. D. Quan, H. H. Ha, L. D. Son, T. V. An, N. T. Hung, and C. V. Linh, “Control system architecture of an intelligent humanoid robot ”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 1162–1178, Dec. 2022.



Mechanical Engineering - Mechatronics

Most read articles by the same author(s)